
Organic Computing 1

Dr. rer. nat. Christophe BobdaDr. rer. nat. Christophe Bobda
Prof. Dr. Rolf WankaProf. Dr. Rolf Wanka

 Department of Computer Science 12Department of Computer Science 12
 Hardware-Software-Co-DesignHardware-Software-Co-Design

Organic ComputingOrganic Computing

Organic Computing 2

The LandscapeThe Landscape

Organic Computing 3

Existing Systems
 Academic Efforts

 University Research
 Work contributing to the Autonomic computing systems beyond

- IBM’s laboratories.
 Few Research Projects include

- OceanStore - UC Berkeley Computer Science Division
- Kinesthetics eXtreme (KX) - Columbia University
- Anthill - Department of Computer Science University of Bologna, Italy
- Software Rejuvenation . Duke University
- The Horus Project - Cornell University
- eBiquity- University of Maryland Baltimore County
- Recovery Oriented Computing - UC Berkeley / Stanford
- Autonomia - University of Arizona

Organic Computing 4

Existing Systems
 Industry Efforts

 IBM committed focus to working within its own global labs and
researchers.

- Gryphon: Pub/Sub
- Smart-Self Managing and Resource Tuning DB2
- Sabio
- Storage Tank
- Océano
- Smart Grid

 Microsoft Research
- AutoAdmin

Organic Computing 5

OceanStore (UC Berkeley)

 Definition
A utility infrastructure designed to span the globe and provide continuous
access to persistent information.

Organic Computing 6

OceanStore: Goal

 Computing everywhere:
 Desktop, Laptop, Palmtop
 Cars, Cellphones
 Shoes? Clothing? Walls?

 Connectivity everywhere:
 Rapid growth of bandwidth in the interior of the net
 Broadband to the home and office
 Wireless technologies such as CMDA, Satellite, laser

Organic Computing 7

OceanStore: Goal

 Where is persistent information stored?
 Want: Geographic independence for availability, durability, and

freedom to adapt to circumstances
 How is it protected?

 Want: Encryption for privacy, signatures for authenticity, and
Byzantine commitment for integrity

 Can we make it indestructible?
 Want: Redundancy with continuous repair and redistribution for long-

term durability
 Is it hard to manage?

 Want: automatic optimization, diagnosis and repair
 Who owns the aggregate resouces?

 Want: Utility Infrastructure!

Organic Computing 8

OceanStore: Goal
 Can’t possibly manage billions of servers by hand!
 System should automatically

 Adapt to failure
 Repair itself
 Incorporate new elements

 Can we guarantee data is available for 1000 years?
 New servers added from time to time
 Old servers removed from time to time
 Everything just works

 Many components with geographic separation
 System not disabled by natural disasters
 Can adapt to changes in demand and regional outages
 Gain in stability through statistics

Organic Computing 9

OceanStore: Infrastructure

 Transparent data service provided by federation
of companies:
 Monthly fee paid to one service provider
 Companies buy and sell capacity from each other

Pac
 Bell

Sprint

IBM
AT&T

Canadian
OceanStore

IBM

Organic Computing 10

System architecture
 Naming and Access Control

 GUID (Naming)
 Reader and Writer Restriction

 Data Location and Routing
 Fast Probabilistic Routing Algorithm (Self - Optimizing)
 Slower, reliable hierarchical routing method (Plaxton Scheme)

- Self healing, Self optimizing and Self Managing
 Update Model

 Managed by a series of replicas
- Master, Primary and Secondary tier of replicas.

 Durable Storage
 Active Data in floating replicas
 Archival Data in Erasure Coded fragments

Organic Computing 11

OceanStore: Security
 Unique, location independent identifiers

 Every version of every unique entity has a permanent, Globally
Unique ID (GUID)

 All OceanStore operations operate on GUIDs
 Naming hierarchy

 Users map from names to GUIDs via hierarchy of OceanStore objects

 Requires set of “root keys” to be acquired by user

Each link is either a GUID (RO)
Or a GUID/public key combination

Foo
Bar
Baz Myfile

Out-of-Band
“Root link”

Organic Computing 12

OceanStore: Routing and data localization
 Requirements

 Find data quickly, wherever it might reside
- Locate nearby data without global communication
- Permit rapid data migration

 Insensitive to faults and denial of service attacks
- Provide multiple routes to each piece of data
- Route around bad servers and ignore bad data

 Repairable infrastructure
- Easy to reconstruct routing and location information

 Technique: Combined Routing and Data Location
 Packets are addressed to GUIDs, not locations
 Infrastructure gets the packets to their destinations and verifies that

servers are behaving

Organic Computing 13

OceanStore: Routing and data localization
 Fast, probabilistic search for “routing cache”

 Built from attenuated bloom filters
 Approximation to gradient search
 Not going to say more about this today

 Redundant Plaxton Mesh used for underlying routing infrastructure
 Randomized data structure with locality properties
 Redundant, insensitive to faults, and repairable
 Amenable to continuous adaptation to adjust for:

- Changing network behavior
- Faulty servers
- Denial of service attacks

Organic Computing 14

OceanStore: Automatic maintenance
 All Tapestry state is Soft State

 State maintained during transformations of network
 Periodic restoration of state

 Self-Tuning of link structure
 Dynamic insertion

 New nodes contact small number of existing nodes
 Integrate themselves automatically
 Later, introspective optimization will move data to new servers

 Dynamic deletion
 Node detected as unresponsive
 Pointer state routed around faulty node (signed deletion requests

authorized by servers holding data)

Organic Computing 15

OceanStore: Introspective OptimizationIntrospective Optimization
 Monitoring and adaptation of routing substrate

 Optimization of Plaxton Mesh
 Adaptation of second-tier multicast tree

 Continuous monitoring of access patterns
 Clustering algorithms to discover object relationships

- Clustered prefetching: demand-fetching related objects
- Proactive-prefetching: get data there before needed

 Time series-analysis of user and data motion
 Continuous testing and repair of information

 Slow sweep through all information to make sure there are sufficient
erasure-coded fragments

 Continuously reevaluate risk and redistribute data
 Diagnosis and repair of routing and location infrastructure
 Provide for 1000-year durability of information?

Organic Computing 16

OceanStore:OceanStore: Data eradicationData eradication
 Eradication is antithetical to durability!

 If you can eradicate something, then so can someone else! (denial of
service)

 Must have “eradication certificate” or similar
 Some answers:

 Bays: limit the scope of data flows
 Ninja Monkeys: hunt and destroy with certificate

 Related: Revocation of keys
 Need hunt and re-encrypt operation

 Related: Version pruning
 Temporary files: don’t keep versions for long
 Streaming, real-time broadcasts: Keep? Maybe
 Locks: Keep? No, Yes, Maybe (auditing!)
 Every key stroke made: Keep? For a short while?

Organic Computing 17

Autonomic features
 Autonomic and Dynamic Optimization Self-optimization
 Monitoring and adaptation of routing substrate Self-configuration

 Optimization of Plaxton Mesh
 Adaptation of second-tier multicast tree

 Continuous monitoring of access patterns Self-healing
 Enhance performance through pro-active movement of data

 Continuous testing and repair of information Self-protection
 Automatic replication for disaster recovery
 Diagnosis and repair of routing and location infrastructure

 For more Infos
 OceanStore vision paper for ASPLOS 2000

“OceanStore: An Architecture for Global-Scale Persistent Storage”
 OceanStore web site:

http://oceanstore.cs.berkeley.edu/

Organic Computing 18

Kinesthetics eXtreme (KX) - Columbia UniversityKinesthetics eXtreme (KX) - Columbia University
 Modifications in structure and behavior that can be made to

 individual components,
 sets of components
 the overall target system configuration,

 Modifications include such as adding, removing or substituting
components, while the system is running and without bringing it
down.

 Goals:
 Supporting run-time software composition,
 Enforcing adherence to requirements,
 Ensuring uptime and quality of service of mission-critical systems,
 Recovering from and preventing faults,
 Seamless system upgrading, etc.

 Reference
 http://www.psl.cs.columbia.edu/kx/

Organic Computing 19

KX: ApproachKX: Approach
 Dispatch mobile agents to components to perform dynamic

adaptation tasks
 Coordinate concerted action of multiple agents on multiple

components via decentralized workflow
 Dynamic adaptation workflow process incorporates knowledge

about the specifications and architecture of the target software
system

 Allows to address at run-time configuration management,
deployment, validation and evolution concerns normally dealt with
only at development time

Organic Computing 20

KX: KX: Prerequisite InfrastructurePrerequisite Infrastructure
 Superimpose a minimally intrusive monitoring meta-architecture on

top of the target system
 Introduce an adaptation feedback and feedforward control loop

onto the target system, detecting and responding to the
occurrence of certain conditions at and among components and
connectors

Organic Computing 21

KX: KX: Prerequisite InfrastructurePrerequisite Infrastructure
 Probes register

and report low-level events indicating the behaviors/activities (or
lack thereof) of the target system (via active interfaces, probelets,
instrumented connectors, others)

 Distributed asynchronous event bus
receives probed events and propagates them through packaging,
filtering and notification facilities

 Gauges
describe/measure the progress of the target system, rendered as
visual or textual portal panels or as data feeds into decision
support

Organic Computing 22

KX: KX: Prerequisite InfrastructurePrerequisite Infrastructure

Organic Computing 23

The Anthill projectThe Anthill project
 Motivation

 Incresaing popularity of P2P systems (Napster, Freenet, Gnutella)
- Sharing of digital documents (audio, video, etc...)
- Distributed computing (Seti@Home, Distributed.net)
- Messaging and collaborative tools (Groove)

 Poor popularity of P2P systems
- Copyrighted documents

 However high potential: The “dark matter” of Internet
- Huge amount of decentralized resource available

 Goal
 Provide a framework to design P2P systems

 Reference
 http://www.cs.unibo.it/projects/anthill/

Organic Computing 24

The Anthill projectThe Anthill project
 The Anthill project builds on the similarities between P2P systems

and social colonies of ants.
 Anthill construct P2P services that exhibit adaptation and self-

organization properties.
 Ant Colony Algorithms

 Agent Based
- Artificial Ants of limited individual capabilities move across network of

nodes trying to solve a particular problem.
- While moving they build partial solutions and modify the problem

representation by adding collected information.
 Complex Adaptive

- Individual ants are unintelligent and have no problem solving capability.
- Nevertheless ant colonies manage to perform several complicated tasks

 Reference
 http://www.cs.unibo.it/projects/anthill/

Organic Computing 25

The Anthill projectThe Anthill project
 In the Anthill framework, a P2P system is composed of a network

of connected “nest”
 A nest is a peer entity running on the machine of some user and

capable of
- Performing some computation
- Storing documents

 Nest generates requests or react to requests
 Request create ants (autonomous agents) which travell across the

network and perform some actions like
- Performing some computation
- Querying the nest for documents and inserting new documents
- Release information (“pheromone”) about documents

 The framework anthill cares about the low level details such as
security, communication, ants scheduling, etc...

 An evaluation framework is also provided to analyse the behavior
of the ants
 Evaluation is base on ants algorithm simulated in artificial nests

Organic Computing 26

The Anthill projectThe Anthill project

Organic Computing 27

Anthill autonomic propertiesAnthill autonomic properties
 Ants are autonomous agents capable of

 Moving across a nest network.
 Interacting with the nest they visit to pursue their goals.
 Characterized by their algorithm (“species”).
 Behavior of an ant may be

- non-deterministic (probabilistic).
- Depends on its algorithm and its current state.

 Evolutionary Framework (Autonomic Nature)
 Anthill exploits “nature” metaphor using evolutionary techniques

- Genetic Algorithms in tuning ant algorithms.
- Minimization of the total path length traversed by ants.

 Investigates: can genetic algorithms be applied at runtime ??
- Nests could “steal” algorithms and parameters of visiting ants.
- Crossover and mutation techniques for generating new ants.

Organic Computing 28

Software RejuvenationSoftware Rejuvenation
 Fault classifications

 Bohrbugs
- Permanent design fault
- Deterministic in nature
- Can be identified easily and weeded out during testing and

debugging phase
 Heisenbugs

- Permanent
- Cause transient failures
- Condition of activation rarely reproducible

– Typical occur at boundaries between software components
 Aging-related

- Like heisenbugs, activated under certain conditions
- May not be reproducible

 Reference: http://www.software-rejuvenation.com/

Organic Computing 29

Software RejuvenationSoftware Rejuvenation
 Software aging

 Error conditions accumulating over time
- Leading to performance degradation/crash

 Not related to application program becoming obsolete due to
changing requirements/maintenance

- Frees up OS resources Removes error accumulation
 What constitute aging

- Memory leaking
- data corruption
- Storage space fragmentation
- Round off error accumulation

 How does it manifest itself
- Performance degradation, transient failure

 Common causes
- Memory leaks, data corruption, fragmentation

 Reference:
 http://www.software-rejuvenation.com/

Organic Computing 30

Software RejuvenationSoftware Rejuvenation
 Software rejuvenation is a proactive fault management technique

aimed at cleaning up the system internal state to prevent the
occurrence of more severe crash failures in the future.
 Involves occasionally stopping

- the running software,
- Cleaning its internal state and restarting it

 Counteracts the aging phenomenon
- Frees up OS resources
- Removes error accumulation

 Common techniques for cleaning
- Garbage collection
- Defragmentation
- Flushing kernel and file server tables

Organic Computing 31

Approaches to RejuvenationApproaches to Rejuvenation
 Open loop periodic

 No feedback from the system is required
 Rejuvenation is done periodically (elapsed time)
 Rejuvenation is done based on the load on the system

 Closed loop (feedback control)
 Feedback from the system (monitoring)

- Collects information on the system resources and activities
 Rejuvenation is performed based on the system health

- Data analysis to estimate time of exhaustion of a component or an entire
system degradation/crash

- Estimation can be based both on time and system load
- Estimation can also be based on system failure data analysis

 Data analysis can be
- Off-line: best suit for system with deterministic behavior
- On-line: best suited for system with unpredictable behavior. Future

system behavior is computed based on data

Organic Computing 32

Software rejuvenation ExamplesSoftware rejuvenation Examples

 Applications
 AT&T billing applications
 On-board preventive maintenance for long-life deep space missions

(NASA.s X2000 Advanced Flight Systems Program)
 Patriot missile system software - switch off and on every 8 hours
 IBM Director Software Rejuvenation
 Process Recycling in IIS 5.0

Organic Computing 33

Recovery oriented computing (ROC)Recovery oriented computing (ROC)
 Philosophy: Even the most robust systems still occasionally

encounter failures due to
 Human operator
 Permanent hardware failure
 Software anomalies resulting from heisenbugs or software aging

 Failures are facts, not problems
 Recovery/repair is how we cope with them

 Improving recovery/repair improves availability

 Five “ROC Solid” Principles
 Given errors occur, design to recover rapidly.
 Given humans make errors, build tools to help operator find and

repair problems.
- e.g., undo; hot swap; graceful, gradual SW upgrade.

Organic Computing 34

Recovery oriented computing Recovery oriented computing
 Extensive sanity checks during operation.

- To discover failures quickly (and to help debug)
 Any error message in HW or SW can be routinely invoked, scripted

for regression test.
- To test emergency routines during development.

 Recovery benchmarks to measure progress.
- Recreate performance benchmark competition.

 Three R’s for recovery
 Rewind: roll all system state backwards in time.
 Repair: change system to prevent failure.

- e.g., fix latent error, retry unsuccessful operation, install preventative
patch.

 Replay: roll system state forward, replaying end-user interactions lost
during rewind.

 Reference: http://roc.cs.berkeley.edu/

Organic Computing 35

Recovery oriented computing – issuesRecovery oriented computing – issues
 Isolation and redundancy

 Isolation is crucial in fault containment and safe on-line recovery
- Ability to isolate portion of the system

 Isolation demands redundancy
- Continue service delivery while portion of the system are isolated

 Isolation and redundancy must be failure-proof under a broad failure
model, including all software and human-induced failures

 System wide support for undo
 Human error is the largest single cause of failure (data analysis)
 Undo facilities to allows the human to recover from their errors

- For complex performed operation, “repair the past”
- Three steps useful

– Rewinding time
– Repair problems
– Replaying the system back to the current time

Organic Computing 36

Recovery oriented computing – issuesRecovery oriented computing – issues
 Integrated diagnostic support

 Rapidly detect the presence of failures
 Identify root failure for quick containment and repair
 Self-testing and verification of the behavior of all modules a system

depends on
 Automate root cause analysis

 Dependability/Availability benchmarking
 Develop benchmark that provides impartial measure of system

dependability
 Berkeley benchmark uses

- Injection of system-level faults and perturbation to evaluate the impact of
realistic failure on delivered quality of service

- Based on collection of faults and failure from real internet service
environments

- Definition of metrics for dependability

Organic Computing 37

PinpointPinpoint
 Motivation

 Systems are large and getting larger
 Systems are dynamic
 Difficult to diagnose failures

 Pinpopint V1
 Fault diagnosis via data clustering

- Off-line analysis;
 Sun's J2EE reference implementation

- Single-node; log EJB, JSP, and JSP tags
 Results: trade-off accuracy against false-positives

- Accuracy: 70-90%. False-positives: 20-40%
- Other techniques: Either have poor accuracy (40%) or many false-

positives (90%)

Organic Computing 38

PinpointPinpoint
 Pinpoint V2

 On-line analysis
- Instrument more robust, clustered J2EE platform (JBoss)

 Tools to attack wider range of problems
- Deducing application structure
- Detecting application-level faults

 Improve fault diagnosis for multiple component faults
 Integration with repair processes

 Home assignment:
 Investigate the clustering policy for fault root identification and

isolation

Organic Computing 39

PinpointPinpoint

 Implementation
 Built on top of J2EE platform
 Version 2 of Pinpoint

- instruments JBoss
middleware.

- Observe calls to and returns
from components, exceptions

- Record component details,
SQL queries, timestamp

- Record path context: request
id, sequence number

 Reference
- http://pinpoint.stanford.edu/

Organic Computing 40

Sabio (IBM)Sabio (IBM)
 Sabio takes large collections of documents within an enterprise

and breaks them down automatically into a taxonomy.
 unaided by human categorizers.
 Automated Taxonomy Generator as it is called in Raven.

 employs Bayesian statistics
 decompose each document into a collection of "tokens.
 assembles a collection of relevant words and phrases in all the

documents.
 treats this collection mathematically as points in a huge

multidimensional space.
- each dimension corresponds to a single word or phrase,

 number of times the word or phrase appears determines how far out
along the dimension the point lies.

 2 documents which share many of the same words and phrases
relatively close together in this multidimensional space.

 Combined with the Lotus Product

Organic Computing 41

SMART DB2SMART DB2
 The DB2 SMART project aims to create technology for reducing human

 intervention and cost in DB2 operation.
 It builds on and extends existing self-managing technologies in

DB2.
 Adjust every configuration parameter dynamically while the system is in use
 Expand and shrink memory usage, based on workload
 Automatically profile workloads and recommend and create indexes,
 partitioning, clustering, summary tables, and so on to improve performance
 Automatically detect the need for, estimate the duration of, and schedule

maintenance operations such as reorganization, statistics collection, backup,
copy

 Observe actual performance and exploit that information to improve
operations

 Recommend action when the performance isn’t meeting the DBA’s
expectations

 Predict problems such as low memory or constrained disk space and notify
someone by pager or email in advance.

Organic Computing 42

SMART DB2 – Autonomic featuresSMART DB2 – Autonomic features
 Query Optimizer

 Automatically determines the best way to execute a declarative SQL
query.

 Automatic selection of degree of parallelism
 Setting and adjusting degree of parallelism for queries and utilities.

 Detection of partial disk writes
 Protects data integrity by automatically detecting any corrupted data

from incomplete I/O’s.
 Application Control and Tuning

 Query Patroller
- “Predictive Governer” uses the “Query Optimizer” estimate of relative resources for

each query to limit surges of arriving or long running queries.
- “Reactive Governer” monitors the actual resources consumed to prevent runaway

queries.
 Performance Expert

 Performs passive monitoring and collects trace and monitor data in a
performance data warehouse.

 Buffer Pool Analyzer
- Collects buffer pool activity and models changes to the objects in the buffer pools.

Organic Computing 43

Autoadmin - MicrosoftAutoadmin - Microsoft
 Self Tuning and Self Administering Databases.
 Enabling databases to track the usage of their systems and

to gracefully adapt to application requirements
 Bottom up approach

 Choose appropriate physical objects and their organization
- Indexes
- Materialized Views
- Statistics

 Goal: Optimize performance

Organic Computing 44

Autonomia - Autonomia - University of ArizonaUniversity of Arizona
 AUTONOMIA environment provides the application developers

 Tools required to specify the appropriate control and management
schemes

- to maintain any quality of service requirement
- application attribute/functionality (e.g., performance, fault, security, etc.)

 Core autonomic middleware services
 Self-Configuring Engine

 Responsible for configuring/reconfiguring the applications on the air.
 Chooses the appropriate policy specified by the self-configuring

profile to configure the application.
 Self Optimizing

 Optimizes application as well as system performance at runtime
 Handler selects appropriate mechanism to optimize application

performance

Organic Computing 45

AutonomiaAutonomia
 Self-Protecting Handler

 Uses the idea of intention list to make decisions on the fly about
access control to various tasks.

 Autonomia Security Manager constantly monitors the agent intention
list and tasks.

 Agent only allowed to execute tasks published in the intention list.
 Any deviation causes loss of further access for the agent.

 Reference
 http://www.ece.arizona.edu/~hpdc/projects/AUTONOMIA/

 Home assignment:
 Investigate the self healing, self configuring, self protecting algorithms

in AUTONOMIA

http://www.ece.arizona.edu/~hpdc/projects/AUTONOMIA/

Organic Computing 46

Autonomia - ArchitectureAutonomia - Architecture

Organic Computing 47

Autonomia – Autonomia – main componentsmain components
 Application Management Editor (AME)

 Enable users to develop their application with the ability to specify the
control and management policy

 Autonomic Middleware Servicem
 Provides common middleware service and tools.
 The main modules are:

- Component repository
- Resource repository
- Application Information and Knowledge repository
- Event server
- Policy engine and autonomic services

 Application Delegate Manager
 Sets up the application execution environment und maintaining its

requirements at run-time
 Monitoring Services

 Allow the components and system resources to be monitored

Organic Computing 48

Autonomia – Autonomia – self deployement/configurationself deployement/configuration

AIK
Repository

Event
Server

Compon
ent

Reposito
ry

Resourc
e

Reposit
ory

Self
Deploying

Host A
MAS A

Component

Task Agent

Interface

Resource
Monitor

1

2

4

3

5

56

7

Application Delegated
Manager (ADM)

Organic Computing 49

Autonomia – Autonomia – Fault Recovery MechanismFault Recovery Mechanism

Step:
2. Checkpointing regularly

3. Detect a component failure

4. Report a component fault
entry

5. Notify the fault handler

6. Read the component type

7. Get another available MAS

8. Dispatch an agent to the
host

9. Read the checkpoint

10. Resume execution

Host A

Component
Fault
Handler

Deployment
Infor

JavaSpaces

 MAS A Host B

MAS B

1
7

2

3

4
6

5

Resources
Repository

8

9

Organic Computing 50

Smart Grid - IBMSmart Grid - IBM
 OptimalGrid is a project in the distributed systems department at

the IBM Almaden Research Center designed to solve the next
generation of large scale parallel problems on a large number of
network-attached, heterogeneous compute nodes (i.e. "The Grid“)

 OptimalGrid automates aspects of solving a large scale connected
problem on a computing Grid

 Research prototype of grid-enabled middleware designed to hide
complexities of
 partitioning,
 distributing, and
 load balancing.

 Reference - download
 http://www.alphaworks.ibm.com/tech/optimalgrid/download

Organic Computing 51

Smart Grid - Smart Grid - PrototypePrototype
 Major components:

 Autonomic Program Manager (APM)
 Variable Problem Partitions (VPP)
 Computing Agents (CA)
 Autonomic Rule Engine (ARE)
 Micropayment Broker (MPB)
 UDDI Server (Universal Description Discovery Integration)
 OSGI (Open Services Gateway Initiative)

 Component Roles:
 APM employs the ARE and manages CAs
 CAs run VPPs, communicating with other VPPs (CAs) through some

mechanism.
 CAs log performance data that is used by the ARE to adjust the VPP

sizes(allocations) for each of the CAs

