
T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

it 5/2008

Schwerpunktthema

Invasive Algorithms
and Architectures

Invasive Algorithmen und Architekturen

Jürgen Teich, Universität Erlangen-Nürnberg

Summary In this seminal paper, we introduce the notion
of invasive algorithms and corresponding parallel computing
architectures also called invasive. The main idea of invasion
is to add to a given single-processor program the ability to
explore neighbor processors and to copy itself to such proces-
sors in a phase of invasion, and then to execute the given
problem in parallel based on the available (invasible) region
on a given multi-processor architecture. After this parallel
execution, the program may perform a retreat and resume ex-
ecution again sequentially on the single processor. In order
to support invasion, new architectural concepts as well as
means to support invasion on reconfigurable MPSoCs are pro-
vided. We do believe that invasion will become an important
step towards self-organizing behavior which will be needed
in the massively parallel MPSoC area beyond the year 2020
with unrivaled performance and resource efficiency numbers
as one of the main challenges for MPSoCs apart from their
programming. In case of invasion, an algorithm is able to
spread itself for parallel execution based on availability of
processing resources. ��� Zusammenfassung In die-
sem einführenden Beitrag wird ein neues Paradigma paralleler
Programmierung unter der Bezeichnung Invasive Algorithmen
vorgestellt sowie die Funktionsweise Invasiver Architekturen

zu deren Unterstützung. Invasion bezeichnet dabei die Fä-
higkeit eines Programms, Nachbarprozessoren in eine paral-
lele Abarbeitung einzubeziehen, in dem ein Programm sich
selbst auf Nachbarprozessoren kopiert und anschließend ein
gegebenes Problem basierend auf den freien und erober-
ten Prozessorregionen gemeinsam und parallel ausgeführt
wird. Nach einer parallelen Ausführung kann sich das Pro-
gramm dann gegebenenfalls wieder zurückziehen auf einer
gegebenen Multiprozessorarchitektur und somit die Ressour-
cen für Invasion anderer Algorithmen freigeben. Wesentliche
Merkmale invasiver Programmierung als auch Architekturmerk-
male zur Unterstützung von Invasion werden hier erstmals
vorgestellt. Effiziente Umsetzungen von Invasion und Rück-
zugsoperationen verlangen ausgeklügelte Techniken hardware-
rekonfigurierbarer Prozessoren und Verbindungsstrukturen. Zu-
dem verspricht eine solche Art der Selbstorganisation von
Berechnungen auf einem Parallelrechner auch ein Weg zur Lö-
sung des Programmier- und Übersetzerproblems hochparalleler
MPSoC-Architekturen. Wir glauben, dass Invasion als wichti-
ger Beitrag von Selbstorganisation auf einem Parallelrechner
in zukünftigen MPSoC in Jahren nach 2020 erhebliche Vor-
teile bringen wird hinsichtlich Performance und Ressourcen-
effizienz.

KEYWORDS B [Hardware]; B.7 [Hardware: Integrated Circuits]; C [Computer Systems Organization]; C.1 [Computer Systems
Organization: Processor Architectures]; C.3 [Computer Systems Organization: Special-Purpose and Application-
Based Systems] Invasive Computing; Invasives Rechnen

1 Challenges
in the MPSoC Era
Miniaturization in the nano era
makes it possible already now to
implement billions of transistors,
and hence, massively parallel com-
puters on a single chip with typ-
ically 100s of processing elements.

One example that Intel announced
in 2006 is their development of
an 80 core floating point multi-
processor on a (single) chip (MP-
SoC) including a routing network
and stripped-off x86 instruction set
architecture of each core. Another
example are so-called WPPAs [1]

(Weakly-Programmable Processor Ar-
rays) as shown in Fig. 1. Shown
is a template of a massively par-
allel MPSoC with reconfigurable
interconnect network and process-
ing elements that are customiz-
able with respect to individual or
a set of domain-specific applica-

300 it – Information Technology 50 (2008) 5 / DOI 10.1524/itit.2008.0499 © Oldenbourg Wissenschaftsverlag

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Invasive Algorithms and Architectures ���

Figure 1 Template of a mesh-connected WPPA with VLIW-type processing elements.

Figure 2 Architecture of a 2 × 2 WPPA MPSoC customized for image filtering type of operations and
implemented in 90 nm technology. Shown is also the reconfiguration control unit for loading programs
into the PEs and for reconfiguration of the interconnect topology between processing elements (WPPEs) at
run-time.

tions [1; 2]. They are called weakly-
programmable because their instruc-
tion set, word precisions, number
of functional units, and many other
parameters may be customized for
a set of dedicated application pro-
grams to run.

Indeed, building such parallel
single-die parallel computers is feas-
ible already today, see, e. g., the
layout of a 2 ×2 WPPA in Fig. 2
(90 nm technology). The internal
structure of one processing elem-
ent optimized for image filtering
algorithms as occurring in medical
imaging [3] is shown in Fig. 3.

However, the programming of
such special-purpose parallel com-
puters may be often very tedious
and the problem of managing differ-
ent applications running on a single
chip can be very cumbersome. Of-
ten, this task is centralized (see, e. g.,
in Fig. 2), or not coordinated at
all.

Nevertheless do we see an im-
portant and growing number of
applications in many areas of high
computational demands such as
embedded imaging, automotive and
medical systems, industrial control
as well as in the sectors of gaming

301

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Schwerpunktthema

Figure 3 VLIW processing element (WPPE) customized for image filtering operations (90 nm technology).

and entertainment that will heavily
profit from such massively parallel
MPSoCs in the future.

The major problems to fully
exploit such innovative multiproces-
sor computing architectures may be
summarized as follows:
• Lack of architecture-aware pro-

gramming support: Parallel pro-
gramming languages do not
provide constructs to support
resource-awareness such as con-
straints on available processing,
memory and communication
resources.

• Self-mapping of parallel pro-
grams to processors: Allocation
of computations to processors,
communication and memory
mapping is done statically and
therefore not allowing to imple-
ment self-adaptiveness.

• Missing compiler and simulation
support for adaptive programs
and architectures.

As the mapping and timing of
the parallel execution of an appli-
cation to run on an MPSoC may
not be fully specified at compile-
time, there is furthermore the prob-

lem how to control and distribute
resources among different applica-
tions running on a single chip in
order to satisfy high resource utiliza-
tion and high performance.

Finally, whereas for a single
application, the optimal mapping
onto an array of processors may
be computed at compile-time which
holds in particular for loop-level
parallelism and corresponding pro-
grams [2; 4; 5], such a static map-
ping might not be feasible for
execution at run-time because of
time-variant resource constraints or,
because the degree of exploitable
parallelism may be data-dependent,
hence only known at run-time. The
control of such a massively parallel
computer with hundreds to thou-
sands of processing elements would
also become a major performance
bottleneck if completely controlled
by a central instance.1 Also, the in-
terconnect structure should be flexi-

1 Of course, we do not believe the future
of MPSoCs will be fully ruled by invasive
control. Perhaps, there will be a number of
regional observer modules with a certain in-
sight when and where to allow algorithms to
invade.

ble enough to reconfigure different
topologies between cells dynami-
cally and with little reconfiguration
and area overheads.

2 Invasive Programming:
A new Paradigm
for Parallel Computing

In vision of the above capabilities
of todays hardware technology, we
would like to propose a completely
new paradigm of parallel computing
called invasive programming in the
following.

One way to manage the con-
trol of parallel execution in MPSoCs
with hundreds of processors in the
future would obviously be to give
the power to manage resources, i. e.,
link configurations and processing
elements to the algorithms them-
selves while running on the machine
and thus have the running programs
manage and coordinate the process-
ing resources themselves. This leads
to a new self-organizing computing
paradigm called invasive program-
ming.

Definition 1. Invasive Programming
denotes the capability of a program
running on a parallel computer to
request and temporarily claim pro-
cessing, communication, and memory
resources in the neighborhood of its
actual computing environment, to
then execute in parallel the given pro-
gram using these claimed resources,
and to be capable to subsequently free
these resources again.

An example of invasion is
shown in Fig. 4.2 Two algorithms
A1 and A2 are running in par-
allel and a third algorithm A3 is
starting its execution on a single
processor (upper right corner). In
a phase of invasion, it tries to claim
all its neighbor processors to the
west to contribute their resources
(memory, wiring harness, and pro-
cessing element power) for a joint
parallel execution. Once having de-
tected borders of invasion, e. g.,
given by resources allocated already

2 We call an MPSoC supporting invasion In-
vasIC in the following.

302

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Invasive Algorithms and Architectures ���

Figure 4 Phases of invasion of an FIR filter algorithm (A3) on a WPPA MPSoC on which two
algorithms A1 and A2 are already executing. Program A3 invades its neighbor processors to the
west, infects claimed resources by implanting its program into these claimed cells and then executes
in parallel until termination. Subsequently, it may free used resources again (retreat) by allowing
other neighbor cells to invade.

Figure 5 InvasIC hosting a FIR filter algorithm (A3) together with two other algorithms A1 and
A2 (after invasion).

to running applications or in case
a maximal degree of invasion for op-
timal parallel execution is met, the
invasive program starts to copy its
own program into all claimed cells
and then starts executing in par-
allel, see, e. g., Fig. 5. In case the
program terminates or is not requir-
ing any more all acquired resources,
the program could collectively ex-
ecute a retreat command and free
all processor resources again. An ex-
ample of a retreat phase is shown
in Fig. 6.

Technically, three basic opera-
tions to support invasive program-
ming, namely invade, infect and
retreat that will be explained next
can be implemented with very little
overhead on reconfigurable MPSoC
architectures such as a WPPA [1]
or AMURHA [6] in a few steps by
issuing reconfiguration commands
that are able to reconfigure sub-
domains of interconnect and cell
programs collectively in just a few
clock cycles, hence with ultra-low
overhead. In [1], for example, we
have presented a masking scheme
such a single processor program can
be copied in O(L) clock cycles into
an arbitrarily sized rectangular pro-
cessor region of size N × M, see
Fig. 7.

Hence, the time overhead for an
infection phase, comparable to the
infection of a cell of a living being
by a virus, can be implemented in
linear time with respect to the size
of a given binary program memory
image L. For a WPPA, it can easily
be shown that by spending one sim-
ple hardware flag in each processing
element, the invasion phase can
be implemented in O(max{N, M})
clock cycles where N ×M denotes
the maximally claimable or claimed
rectangular processor region. Before
subsequent cell infection, the inva-
sion flag immunizes a cell against
invasion by other cells until the flag
is again reset in the retreat phase.
The latter phase frees again claimed
resources after parallel execution.
Like for invade, it can be shown that
retreat can be performed decentrally
in time O(max{N, M}).

303

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Schwerpunktthema

Figure 6 Options for invasion (uni- vs. multi-directional) and retreat phases.

Figure 7 Rectangular regions of a WPPA may be infected simultaneously (reconfiguration of
interconnections and program to execute through masking).

3 A Notation of Commands
Supporting Invasive
Programming

Obviously, in order to enable an
algorithm to distribute itself for par-
allel execution through the concept
of invasion, we need to establish

a new programming paradigm and
program notation to express the
mentioned phases of a) invasion, b)
infection, and c) retreat.

In the following, we describe in-
formally and in minimal notation
how basic commands to support

invasive programs could be struc-
tured.

It should be mentioned before-
hand that with respect to mini-
mizing programming overheads, the
following commands could be im-
plemented as special atomic instruc-
tions in the instruction set architec-
ture of invasive processing elements.

3.1 Invade
Invade is the basic instruction to
explore and claim neighborhood
resources of a processor running
a given program. An invade com-
mand could have the following syn-
tax:

P � invade�sender�id�

direction� constraints�

where sender�id is the identi-
fier, e. g., coordinate of the pro-
cessor starting the invasion, and
direction encodes the direction
on the MPSoC to invade, e. g.,
North, South, West, East or All

in which case the invasion is carried
out in all directions of neighbor-
hood. Other parameters not shown
here in this seminal paper are
constraints that could specify
also whether and how not only
program memory, but also data
memory and interconnect struc-
tures should be claimed during in-
vasion.

A typical behavior of an inva-
sive program could be to claim as
many resources in its neighborhood
as possible. Using the above invade
command, a program could deter-
mine the biggest free area to run
on in a fully decentralized manner.
The return parameter P could, e. g.,
encode either the number of proces-
sors or the size of the region it was
able to successfully invade. Another
variant of invade could be to claim
only a fixed number of processors in
each direction, see, e. g., in Fig. 4 in
case of an FIR linear filtering algo-
rithm A3 running concurrently with
two applications A1 and A2. Here,
the filter is issuing an invade com-
mand to all processors to its west.
Figure 5 shows the running algo-
rithm A3 after successful invasion.

304

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Invasive Algorithms and Architectures ���

3.2 Infect
Once the borders of invasion
are determined, the initial single-
processor program could issue an
infect command that copies its
own program like a virus into all
claimed processors. For a WPPA ar-
chitecture, we have shown to be
able to implement this operation for
a rectangular domain of processors
in time O(L) where L is the size
of the initial program. Also, the in-
terconnect reconfiguration may be
initialized for subsequent parallel
execution. As for the invade com-
mand, infect could have several
more parameters considering mod-
ifications to apply to the copied
programs such as parameter set-
tings, etc. After infection, all claimed
processor resources are immunized
against invasion by other processors
as long as they are freed explicitly in
the final retreat phase.

3.3 Retreat
Once the parallel execution is fin-
ished, each program may allow for
invasion by other programs. Using
a special command called retreat,
a processor can reset a flag that
allows other invaders to succeed.
Again, this retreat procedure may
hold for as well interconnect as pro-
cessing and memory resources and
is therefore typically parameterized.
Different possible options of typi-
cal invade and retreat commands are
shown in Fig. 6.

4 Case Study
In this section, we present how
a programming notation for inva-
sive programs could be structured in
case of nested loop programs.

Our case study is an FIR (finite
impulse response) filter algorithm.
FIR filtering is widely used in the
field of digital signal processing to
process a sequence of input sam-
ples u and output a sequence of
filtered samples y according to the
difference equation

y[i]=
N–1∑
j=0

a[j] ×u[i – j].

A simple C-code description of an
FIR filter with N taps is listed as fol-
lows.

for �i���i<T�i���

for �j���j<N�j���

y�i	��a�j	∗u�i
j	�

Here, i denotes the sequence in-
dex and N is the number of filter
taps. The arrays a and u contain the
weights or filter coefficients and the
input signal, respectively. This code
would be able to run on a single pro-
cessor sequentially (P = 1).

In order to support parallel exe-
cution on a massively parallel pro-
cessor array, we can rewrite the
mathematical specification in sin-
gle assignment notation [2] as fol-
lows:

〈i, j : 0 ≤ i < T ∧0 ≤ j < N ::

a[i, j]= a[i – 1, j] If i > 0

= Aj If i= 0

u[i, j]= u[i – 1, j – 1]

If i > 0 ∧ j > 0

= Ui–j If i= 0 ∨ j= 0

y[i, j]= y[i, j – 1] + a[i, j] · u[i, j]〉

In this program notation, al-
gorithmic dependencies are given
by equations instead of assign-
ments statements as in imperative
programming languages. Note that
there is no explicit execution order
specified in this equational scheme.
The equations just define partial
orders of variables that are de-
fined over polyhedral domains and,
hence, are interchangeable, too. In
order to partition these compu-
tations onto a fixed number of
processors, we apply a two-step par-
titioning transformation by tiling
the computation domain according
to a tiling matrix defining sequen-
tial execution and a tiling matrix
defining tiles for parallel execution.
Note that partitioning is and will be
the most important program trans-
formation needed to match problem
size and size of the physical pro-

cessor array in invasive loop pro-
grams.

PLS =

(
2 0
0 N/P

)

PGS =

(
1 0
0 P

)
In the above equation, we can
retrieve the parameter P indi-
cating the size of the invasible
processor array. The matrix PLS

says that we have to perform the
computations over N/P iterations
by one processor. Henceforth, we
obtain the unscheduled parame-
terized program after source to
source transformation as shown in
Fig. 8.

After partitioning the iteration
spaces of computations, we finally
have to define, again in a parame-
terized way, a schedule of the com-
putations as well as the assignment
of computations to physical proces-
sors. This is typically accomplished
by a linear projection of the itera-
tion space as follows:(

p

t

)
=

(
0 0 1 0

N/P 1 N/P + 1 2N/P

)

·

⎛
⎜⎜⎜⎝

j1

j2

k1

l1

⎞
⎟⎟⎟⎠ +

(
0

1

)

This transformation called
space-time mapping shows that the
index k1 becomes the processor
index p of the resulting linear pro-
cessor array implementation. The
other iteration variables j1, j2, l1 are
renamed η1, η2, η3 and are needed
for controlling the resulting pro-
cessor computations over time as
shown in Fig. 9.

Now, the above parametric pro-
gram is all we need to specify in
order to generate code for the paral-
lel implementation on a WPPA. The
index p spans the (parallel) proces-
sor dimension, the index t denotes
the (sequential) time a computation
takes place. Note that the program
in Fig. 9 starts with an invade com-
mand that returns the number P of
invasible processors to its west. As

305

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Schwerpunktthema

Figure 8 Parameterized partitioned yet unscheduled program of an FIR filter algorithm with N taps
and partitioned to run later on P processors.

invading more than N processors
makes no sense in this case, a con-
straint could be set to not invade
more than N processors, the num-
ber of filter taps. Now in the worst
case, P, the number of invaded
processors, could be just one. In
this case, the algorithm would run
completely sequentially on one pro-

Figure 9 Invasive program of an FIR filter with N taps to run on P processors where P is the result of an invade phase. P denotes the processor
number (index) and t the time of execution. This program specifies in a parameterized way all required information to generate and customize
also parameterized assembly code including reconfiguration of register and interconnect as well as temporal control of all memory accesses and I/O
operations.

cessor. In the best case, P = N and
the program would run completely
parallel on N processors. There-
fore, after scheduling, one obtains
processor arrays of parameterized
size P. Note also that depending
on the amount of invasible proces-
sors P, the number of registers to
delay results passed between proces-

sors needs to be configured (param-
eterized number of communication
registers) in Fig. 9.

Finally, we would like to eval-
uate the performance benefits of
invasive programs as the one above
that obviously must be parame-
terizable in terms of available re-
sources and also parameterized in
the control of execution in time. The
throughput of the above FIR filter,
for example with N = 64 taps varies
with the size P of the invaded pro-
cessor array as shown in Table 1. It
can be seen that for the maximally
parallel version with P = N = 64,
the program produces one filter
sample per clock cycle, for P =
N/2 = 32, an output is generated
every two clock cycles, and so on.

The presented basic commands
may be embedded into any ex-
isting programming language such
as C, C++ or Java or by extend-
ing programming standards such
as OpenMP or MPI. By doing so,
invasion can be realized also on
heterogeneous MPSoC architectures
as well as general-purpose paral-
lel computers. In order for invasion
to be implementable efficiently, the
complexity of the algorithmic speci-

306

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Invasive Algorithms and Architectures ���

Table 1 Throughput achievable for an invasive
FIR filter program with N= 64 taps when exe-
cuting on P processing elements.

of PEs P Throughput
(output samples/clock cycle)

64 1.00
32 0.50
16 0.25

8 0.125
4 0.062
2 0.031

fication should not depend on the
invasible regions. In the context of
loop specifications, the above equa-
tional scheme has been shown to be
very valuable for studying the exact
timing and coordination of paral-
lel computations, yet it is powerful
enough to describe all kind of loop-
like computations, even with data-
dependent conditionals. So, we are
able to cover almost any linear alge-
bra, single and multi-dimensional,
signal and image processing algo-
rithms, and many other important
application areas with highest com-
putational demands.

5 Topics of Research
on Invasive Programming

The idea of invasive programming
and architectures reflected in this
paper for the first time opens a full
spectrum of interesting and import-
ant research work involving not only
one, but many disciplines of com-
puter science including program-
ming language design, compilers,
operating system, architectural re-
search, but also new algorithm en-
gineering challenges.

In this section, we try to name
major problems and research do-
mains that should be considered in
order to support invasive program-
ming in future parallel computers.
As the idea of invasive programming
has just been born in this paper, we
are only able to rise these problem
fields that could easily fill many man
years of basic research.

5.1 Algorithm Research

Algorithm Composition
If an algorithm needs to perform as
a subroutine a specific task, it can

try to invade the architecture. How
does it decide which computation
to perform and where depending on
the available resources? For instance,
sorting can be done in O(n log n)
(sequential),O(n) (few processors),
or O(log n)2 (fully parallel). Which
method is appropriate at a certain
moment in time?

Self-Restricted Invasion
Greedy invasion might not always be
the optimal strategy to speed up an
algorithm’s execution. It even may
slow down the overall communica-
tion. For example, in the context of
online algorithms, it is useful in gen-
eral to provide reserves.

Applications and Complexity
of Invasion
For important regular computations
such as nested loop programs, it
must be investigated how programs
may be written and parameterized
so to be executable on any size of an
invaded processor region.

Dynamic Computation Graphs
How can be estimated based on
the current execution the amount
of future resources, e. g., in case
of data-dependent computations?
How and when should be invaded
(once, during program execution,
infrequently) in order to achieve
reasonable speed up and overhead
ratios?

Combat
A natural scenario of invasive archi-
tectures could be that not only one
but several programs could simul-
taneously be in its phase of invasion.
Here, e. g., a game-theoretic view
could help to win insights into
what kind of strategies could be
beneficial to implement based on
the definition of appropriate utility
functions.

5.2 Architectural Research –
InvasICs

Microarchitectures
for Invasive Programming
How does an MPSoC architecture
look like supporting invasion? How
and with what kind of overhead

in terms of area and time can the
above phases of invasion be tech-
nically realized? Here, we have to
rely heavily on existing reconfig-
urable MPSoC technology such as
WPPAs.

Instruction Set Architecture
An instruction set architecture
could be defined based on hard-
ware concepts to support invasion as
special commands with lowest pos-
sible execution time and hardware
resource overhead.

Communication Network Design
With respect to the demand to
establish dynamic communication
paths, either ideas based on cir-
cuit routing such as [7–9] or net-
works on a chip [10; 11] need to
be investigated. In fact, invasion re-
quires to develop new concepts for
dynamic creation (configuration)
of networks on a chip. So-called
DyNoCs [9; 12; 13] (dynamic NoCs)
might provide first ideas here. In
particular, dynamic bandwidth al-
location and routing problems of
decentralized nature need to be
studied as well as dynamic mem-
ory and I/O hierarchies considered.
Finally, also concepts of immunity
must be handled apart from com-
munication of ordinary data.

Control Organization
It could be beneficial to implement
the organization of future MPSoCs
hierarchically. For example, a global
configuration manager could just
decide in what region to place a seed
program from which this program
starts invasion. Such a mixture of
global vs. local self-organized con-
trol would also have the benefit that
global knowledge and insights could
be used. For example, also borders
for invasion might be globally set by
a global controller in order to avoid
collisions.

Quantitative Cost Analysis
How can important properties such
as a) power, b) latency, and c)
hardware overheads for control and
reconfiguration as well as protection
be evaluated and to what percent-

307

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Schwerpunktthema

age do they increase the area budget?
InvasICs such as WPPAs can pro-
vide up to three orders of magnitude
lower power solutions over standard
multi-core implementations.

5.3 Compiler and Tool Support

Simulation
In order to evaluate power and
timing budget savings using inva-
sion, simulators are necessary start-
ing with system-level simulation
down to cycle-accurate behavioral
modeling of execution of an inva-
sive MPSoC. For power simulation,
also RTL simulations must be per-
formed.

Compiler
Nested loop programs may be in-
vestigated for their suitability to
support invasion. In fact, it is
known that about 90% of the exe-
cution time of considered applica-
tions are spent in innermost loops.
So, the first compiler should sup-
port a language augmenting loop
program notations as in Section 4
with commands for invasion. In
this area, also languages for archi-
tecture description must be investi-
gated such as the Machine Markup
Language (MAML) [14]. Further-
more, it would be interesting to
see whether program analysis tech-
niques may be developed that enable
a (semi-)automatic transformation
of non-invasive programs into inva-
sive counterparts.

5.4 Operating System Concepts
Invasion obviously requires also OS
services to protect and coordinate
the phases of invasion, infection and
retreat. In this area, the following
problems need to be investigated:

Resource Negotiation Protocols
and their efficient implementation.

Concepts for Immunity
Security issues of self-reconfigurable
MPSoCs against invasion.

Control Issues
When and where on the system is
invasion controlled? Is it useful to

implement prioritization schemes of
invasive algorithms? Should priori-
tization be static or dynamic?

Implementation
How can invasion phases be imple-
mented as ultra-low overhead OS
services?

Finally, the question arises
whether the control should be re-
alized centrally or decentrally and
how/if an OS itself could make use
of invasion for its parallel imple-
mentation to best decide on the
parallel execution of competing ap-
plications on the SoC.

The above list of topics for fu-
ture investigations may be extended
by many other questions, e. g., ap-
plication domain research. Here, it
would be interesting to see which
kind of applications could benefit
from invasion.

Invasive architectures can range
from homogeneous parallel archi-
tectures such as WPPAs that ex-
ploit loop-level and instruction level
parallelism to fully heterogeneous
MPSoC architectures exploiting in-
vasiveness at higher abstraction lev-
els such as thread, task and process
level.

6 Related Work
We would like to conclude with
some remarks of existing work.

Self-organization is a major
topic of the Priority Program
1183 Organic Computing funded by
the German Research Foundation
(DFG). Within this research pro-
gram, there are several projects that
develop new architectural concepts
for SoCs with autonomous behav-
ior such as by Ungerer et al. [15]
for ubiquitous computing environ-
ments and the Autonomic SoC
(ASoC) approach by Herkersdorf
et al. [16]. The main focus of the
latter is, however, mainly to pro-
vide higher reliability figures of
MPSoCs in the nano-computing
era. For digital image processing,
Fey et al. [17] have proposed an
algorithmic approach called march-
ing pixels where the idea is to

send data and basic instructions
for decentralized computations on
images through an array of pro-
cessing elements. Although this
approach has only been proposed
for certain types of image pro-
cessing algorithms, the idea that
processors change their behavior
based on incoming data that also
may include instructions to per-
form and based on the local state
of a processor is the work that
could be considered most closely
related to our ideas on invasive pro-
gramming. We do believe, however,
that invasive programming is much
more general and will be applica-
ble to many more computational-
intensive domains from many appli-
cation areas.

Concerning dynamically re-
configurable MPSoC architectures,
a special issue on the Prior-
ity Program 1148 Reconfigurable
Computing Systems [18] has ap-
peared also in this journal in
2007 [19] with several contribu-
tions on dynamically reconfigurable
computing architectures and cor-
responding methodologies. In the
context of multi-threaded architec-
tures, split/spawn mechanisms may
be applied, see [20]. There, threads
are conditionally splitted depending
on the availability of hardware re-
sources. Hence, similar to invasion,
spawning decisions are delegated to
the architecture by hardware prob-
ing techniques. Results have been
shown on an eight-context SMT as
well as on current standard multi-
core architectures such as Intel’s
dual- and quad-core architecture on
achievable performance gains and
overhead savings.

7 Outlook
In this seminal paper, we have
introduced the notion of inva-
sive algorithms and invasive ar-
chitectures as one possible rem-
edy to fight against the increas-
ing complexity of future paral-
lel computer systems. This con-
cept enables applications to ex-
ploit dynamic resource require-
ments while avoiding fully central-

308

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Invasive Algorithms and Architectures ���

ized and not scalable control of
execution.

The benefits of invasion are
multi-fold and can be summarized
as follows:
• self-exploitation of degree of

parallelism available and avail-
able hardware instead of static
allocation,

• fault-tolerant parallel execution,
and

• decentralized, scalable control.

Nevertheless, there exist also
some threats when allowing an ar-
chitecture to control its resources
uniquely based on the principle of
invasion:
• increasing non-determinism in

algorithm execution resulting
possibility in slow-down or bad
resource utilization,

• unwanted potential for resource
blocking due to selfish behavior.

Finally, some notes on the gen-
erality of the proposed ideas: Al-
though the simple case study on
an invasive FIR-filter algorithm pre-
sented here as an example and
mapped onto a WPPA being a re-
stricted class of computing architec-
ture supporting mainly loop-level,
word (instruction) level, and bit-
level parallelism, we think all the
presented concepts of invasion can
also similarly ported and investi-
gated at higher levels of concur-
rency such as thread, process, and
program-level parallelism.

In particular, the class of tar-
get architectures supporting inva-
sion must not necessarily be a ho-
mogeneous processor architecture
such as a WPPA presented here,
but can also be heterogeneous and
supported by processors of different
types and numbers. This holds also
for the interconnection architecture
that can range from dedicated links
over buses, single or multi-stage
switching networks to complete net-
works on a chip. For example, in-
vasion at the thread-level could be
implemented using an agent-based
approach that distributes programs
or program threads over proces-

sor resources of different kinds. At
this level, dynamic load balancing
techniques might be applied to im-
plement invasion, too.

Note finally that the idea of
invasion is not tightly related or re-
stricted to a certain programming
notation or language. Here, we have
only shown how to structure and
symbolically map loop-level types
of algorithms described in a single-
assignment notation in order to run
on an invasive architecture without
a priori knowledge on the number
of claimable and available proces-
sors.

What is essential about the pre-
sented idea of invasive algorithms
and programs, however, is that
in order to support the concept
of invasion properly, a program
must be able to issue instructions,
commands, statements or function
calls that allow itself to explore
and claim hardware resources. This
sounds contradictory and a step
back into the past when looking
at the achievements of high level
programming languages that free
a programmer from architectural
details. The presented idea of giving
an algorithm control of process-
ing resources is also contradictory
to operating system concepts that
intend to provide a layer of abstrac-
tion between an application and the
hardware resources. However, this is
the price to pay, and it needs to
be investigated where the border of
centralized control vs. invasive con-
trol reaches its greatest benefit.

In summary, an invasive pro-
gram could be seen as a person-
alized object code with own goals
to execute itself, and the question,
whether the above potential benefits
are worth the effort, will still have to
be proven.

Acknowledgements

The author would like to acknowl-
edge the members of his Archi-
tecture/Compiler Co-Design group,
i. e., Frank Hannig, Hritam Dutta,
Dmitrij Kissler, Alexej Kupriyanov
and Matthias Hartl as well as Rolf
Wanka for valuable discussions on

the subject of this paper. Great es-
timation also to the reviewers of this
paper for many helpful comments.

References
[1] D. Kissler, F. Hannig, A. Kupriyanov,

and J. Teich, “A Highly Parame-

terizable Parallel Processor Array

Architecture”. In: Proc. of the IEEE

Int’l Conf. on Field Programmable

Technology (FPT), Bangkok, Thailand,

Dec 2006, pp. 105–112.

[2] F. Hannig, H. Dutta, and J. Teich,

“Mapping a Class of Dependence

Algorithms to Coarse-grained

Reconfigurable Arrays: Architectural

Parameters and Methodology”. In:

Int’l Journal of Embedded Systems,

vol. 2, no. 1/2, pp. 114–127,

Jan 2006.

[3] H. Dutta, F. Hannig, J. Teich, B. Heigl,

and H. Hornegger, “A Design Method-

ology for Hardware Acceleration of

Adaptive Filter Algorithms in Image

Processing”. In: Proc. of IEEE 17th

Int’l Conf. on Application-specific

Systems, Architectures, and Processors

(ASAP). Steamboat Springs, CO, USA:

IEEE Computer Society, Sep 2006,

pp. 331–337.

[4] P. Feautrier, “Automatic Parallelization

in the Polytope Model”. Laboratoire

PRiSM, Universit́e des Versailles St-

Quentin en Yvelines, 45, avenue des

États-Unis, F-78035 Versailles Cedex,

Tech. Rep. 8, June 1996.

[5] F. Hannig and J. Teich, “Resource

Constrained and Speculative

Scheduling of an Algorithm Class with

Run-Time Dependent Conditionals”.

In: Proc. of the 15th IEEE Int’l Conf.

on Application-specific Systems,

Architectures, and Processors (ASAP),

Galveston, TX, USA, Sep 2004,

pp. 17–27.

[6] A. Thomas and J. Becker, “New

adaptive multi-grained hardware

architecture for processing of dynamic

function patterns”. In: it – Information

Technology, vol. 49, no. 3, pp. 165–173,

2007.

[7] A. Ahmadinia, C. Bobda, J. Ding,

M. Majer, J. Teich, S. Fekete, and

J. van der Veen, “A practical approach

for circuit routing on dynamic

reconfigurable devices”. In: Proc. of

the 16th IEEE Int’l Workshop on Rapid

309

T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r.

Schwerpunktthema

System Prototyping, Montreal, Canada,

June 2005, pp. 84–90.

[8] M. Majer, J. Teich, A. Ahmadinia,

and C. Bobda, “The Erlangen Slot

Machine: A dynamically reconfigurable

FPGA-based computer”. In: Journal of

VLSI Signal Processing Systems, vol. 47,

no. 1, pp. 15–31, Mar 2007.

[9] A. Ahmadinia, C. Bobda, J. Ding,

M. Majer, J. Teich, S. Fekete, and

J. van der Veen, “A Practical Approach

for Circuit Routing on Dynamic

Reconfigurable Devices”. In: Proc. of

the 16th IEEE Int’l Workshop on Rapid

System Prototyping (RSP), Montreal,

Canada, June 2005, pp. 84–90.

[10] L. Benini and G. Micheli, “Network

on chips: A new soc paradigm”. IEEE

Computer, Jan 2001.

[11] A. Hemani, A. Jantsch, S. Kumar,

A. Postula, J. Oberg, M. Millberg, and

D. Lindqvist, “Network on Chip: An

Architecture for Billion Transistor

Era”. In: Proc. of the Int’l NorChip

Conference, Sep 2000.

[12] A. Ahmadinia, C. Bobda, M. Majer,

J. Teich, S. Fekete, and J. van der Veen,

“DyNoC: A Dynamic Infrastructure

for Communication in Dynamically

Reconfigurable Devices”. In: Proc. of

the Int’l Conf. on Field-Programmable

Logic and Applications (FPL), Tampere,

Finland, Aug 2005, pp. 153–158.

[13] C. Bobda, M. Majer, D. Koch,

A. Ahmadinia, and J. Teich,

“A Dynamic NoC Approach for

Communication in Reconfigurable

Devices”. In: Proc. of Int’l Conf.

on Field-Programmable Logic and

Applications (FPL), ser. Lecture Notes

in Computer Science (LNCS), vol.

3203. Antwerp, Belgium: Springer, Aug

2004, pp. 1032–1036.

[14] A. Kupriyanov, F. Hannig, D. Kissler,

and J. Teich, Processor Description

Languages – Applications and

Methodologies. Morgan Kaufmann,

Apr. 2008, ch. 12, MAML: An ADL for

Designing Single and Multi-Processor

Architectures.

[15] W. Trumler, A. Pietzowski, B. Satzger,

and T. Ungerer, “Adaptive self-

optimization in distributed dynamic

environments”. In: SASO, 2007,

pp. 320–323.

[16] A. Bouajila, J. Zeppenfeld, W. Stechele,

A. Herkersdorf, A. Bernauer,

O. Bringmann, and W. Rosenstiel,

“Organic computing at the system on

chip level”. In: Proc. of the IFIP Int’l

Conf. on Very Large Scale Integration

of System on Chip (VLSI-SoC 2006).

Pacificaway, NJ, USA: IEEE, Oct 2006,

pp. 338–341.

[17] D. Fey and D. Schmidt, “Marching-

pixels: a new organic computing

paradigm for smart sensor processor

arrays”. In: CF ’05: Proc. of the 2nd

Conf. on Computing frontiers. New

York, NY, USA: ACM, 2005,

pp. 1–9.

[18] Schwerpunktprogramm (SPP 1148)

Rekonfigurierbare Rechensysteme.

[Online]. Available:

http://www12.informatik.uni-

erlangen.de/spprr

[19] J. Teich, “Reconfigurable computing

systems (rekonfigurierbare Rechen-

systeme)”. In: it – Information

Technology, vol. 49, no. 3, pp. 139–

142, 2007.

[20] P. Palatin, Y. Lhuillier and O. Teman,

“CAPSULE: Hardware-Assisted Parallel

Execution of Component-Based

Programs”. In: Proc. Int. Symp. on

Microarchitecture, 2006, pp. 244–258.

Prof. Dr.-Ing. Jürgen Teich received his

masters degree (Dipl.-Ing.) in 1989 from

the University of Kaiserslautern (with hon-

ours). From 1989 to 1993, he was PhD

student at the University of Saarland, Saar-

brücken, Germany, from where he received

his PhD degree (summa cum laude). In

1994, Dr. Teich joined the DSP design group

of Prof. E. A. Lee and D. G. Messerschmitt

in the Department of Electrical Engin-

eering and Computer Sciences (EECS) at

UC Berkeley where he was working in the

Ptolemy project (PostDoc). From 1995

to 1998, he held a position at Institute

of Computer Engineering and Commu-

nications Networks Laboratory (TIK) at

ETH Zurich, Switzerland, finishing his

habilitation entitled ‘Synthesis and Op-

timization of Digital Hardware/Software

Systems’ in 1996. From 1998 to 2002,

he was full professor in the Electrical En-

gineering and Information Technology

department of the University of Paderborn,

holding a chair in Computer Engineering.

Since 2003, he is appointed full professor

in the Department of Computer Science

of the Friedrich-Alexander University

Erlangen-Nuremberg holding a chair in

Hardware/Software Co-Design. Dr. Teich

has been a member of multiple program

committees of international conferences

and workshops and program chair for

CODES+ISSS 2007 and FPL 2008. He is Se-

nior Member of the IEEE. Since 2004, he acts

also as reviewer for the German Research

Foundation (DFG) for the area of Com-

puter Architecture and Embedded Systems.

Prof. Teich is supervising more than 20 PhD

students currently.

Address: Lehrstuhl für Informatik 12, Am

Weichselgarten 3, 91058 Erlangen, Germany,

Tel.: +49-9131-8525150,

Fax: +49-9131-8525149,

E-Mail: teich@informatik.uni-erlangen.de

310

http://www12.informatik.uni-erlangen.de/spprr
http://www12.informatik.uni-erlangen.de/spprr
http://www12.informatik.uni-erlangen.de/spprr
mailto:teich@informatik.uni-erlangen.de

