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The Von Neumann ComputerThe Von Neumann Computer
 Principle

In 1945, the mathematician Von Neumann (VN)
demonstrated in study of computation that a
computer could have a 
simple structure,  
capable of executing any kind of program, 
given a properly programmed control unit, 
without the need of hardware modification
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The Von Neumann ComputerThe Von Neumann Computer
 Structure

1. A memory for storing 
program and data. The 
memory consists of the 
word with the same length  

3. A control unit (control 
path) featuring a program 
counter  for controlling 
program execution

5. An arithmetic and logic 
unit(ALU) also called data 
path  for program 
execution
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The Von Neumann ComputerThe Von Neumann Computer
 Coding

A program is coded as a set of instructions to be
sequentially executed

 Program execution
1. Instruction Fetch (IF): The next instruction to be 

executed is fetched from the memory
2. Decode (D): The instruction is decoded to determine the 

operation
3. Read operand (R):  The operands are read from the 

memory
4. Execute (EX): The required operation is executed on the 

ALU
5. Write result (W): The result of the operation is written 

back to the memory
6. Instruction execution in Cycle (IF, D, R, EX,  W)



Organic Computing 6

The Von Neumann ComputerThe Von Neumann Computer
Advantage:

 Flexibility: any well coded program can be executed

Drawbacks
 Speed efficiency: Not efficient, due to the sequential 

program execution (temporal resource sharing). 
 Resource efficiency: Only one part of the hardware 

resources is required for the execution of an 
instruction. The rest remains idle.

 Memory access: Memories are about 10 time slower 
than the processor

Drawbacks are compensated using high clock speed, 
pipelining, caches, instruction pre-fetching, etc.
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The Von Neumann ComputerThe Von Neumann Computer
Sequential execution
tcycle = cycle execution time
One instruction needs tinstrcution = 5*tcycle

3 instructions are executed in 15*tcycle

Pipelining:
One instruction needs tinstrcution = 5*tcycle

no improvement.
3 instructions need  7*tcycle in the ideal
case. 
9*tcycle on a Harvard architecture.
➢ Increased throughput

➢ Even with pipeline and other 
improvement like cache, the 
execution remain sequential.
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Domain specific processorsDomain specific processors
Goal:
Overcome the drawback of the von Neumann computer.

Optimize the Data path for a given class of applications
DSP (Digital Signal Processors) : 
Signal processing applications are usually multiply 
accumulate (MAC) dominated. 

 The data path is optimized to execute one or many 
MACs in only one cycle.

 Instruction fetching and decoding overhead is 
removed

 Memory access is limited by directly processing 
the input dataflow
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Domain specific processorsDomain specific processors
DSPs:
Designed for high-performance, repetitive, 
numerically intensive tasks

In one Instruction Cycle, can do:
 many MAC-operations
 many memory accesses
 special support for efficient looping

The hardware contains:
 One or more MAC-Units
 Multi-ported on-chip and off-chip memories
 Multiple on-chip busses
 Address generation unit supporting addressing 

modes tailored for DSP-applications
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Application specific processorsApplication specific processors
Optimize the complete circuit  for a given function
ASIC: Application Specific Integrated Circuit.
Optimization is done by implementing the inherent 
parallel structure on a chip

 The data path is optimized for only one application.
 Instruction fetching and decoding overhead is 

removed
 Memory access is limited by directly processing 

the input data flow
 Exploitation of parallel computation
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Application specific processorsApplication specific processors
ASIC Example: 
Implementation of a VN computer
if (a < b) then
{

d = a+b;
c = a*a;

}
else
{

d = a+1;
c = b-1;

}

At least 5 instructions
run-time >= 5*tinstruction

ASIC implementation:
The complete execution is done in 
parallel in one clock cycle
run-time = tclock= delay longest path 
from input to output

The VN computer needs to be clocked 
at least 5 time faster
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ConclusionConclusion
 Von Neumann computer:

General purpose, used for any kind of function.
High degree of flexibility.  

However, high restrictions on the program coding and execution 
scheme 

the program have to adapt to the machine
 DSPs are Adapted for a class of applications. 

Flexibility and efficiency only for a given class of applications.

 ASICs are
Tailored for one application. 

Very efficient in speed and resource.
Cannot re-adapt to a new application

Not flexible
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Reconfigurable device: GoalReconfigurable device: Goal
The Ideal device should combine:

 the flexibility of the Von Neumann computer
 the efficiency of ASICs

The ideal device should be able to 
 Optimally implement an application at a given time
 Re-adapt to allow the optimal implementation of a new 

application.
We call such a device a reconfigurable device.
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Flexibility vs EfficiencyFlexibility vs Efficiency
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Fields of applicationFields of application
 Rapid prototyping

 Post fabrication customization

 Multi-modal computing tasks

 Adaptive computing systems

 Fault tolerance

 High performance parallel computing
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Rapid PrototypingRapid Prototyping
Testing hardware in real conditions before 
fabrication

 Software simulation
➔ Relatively inexpensive
➔ Slow
➔ Accuracy ?

 Hardware emulation
➔ Hardware testing under real operation 

conditions
➔ Fast
➔ Accurate
➔ Allow several iterations

APTIX System Explorer

ITALTEL FLEXBENCH
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Post fabrication customizationPost fabrication customization
Time to market advantage

 Ship the first version of a product
 Remote upgrading with new 

product versions
 Remote repairing

Manufacturer
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Multi-modal computing tasksMulti-modal computing tasks
Reconfigurable vehicles, mobile 
phones, etc..

 Built-in Digital Camera
 Video phone service
 Games
 Internet
 Navigation system
 Emergency
 Diagnostics
 Different standard and protocols
 Monitoring
 Entertainment 

service request

Configuration 
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Adaptive computing systemsAdaptive computing systems
Computing systems that are able to adapt 
their behaviour and structure to changing 
operating and environmental conditions, 
time-varying optimization objectives, and 
physical constraints like changing protocols, 
new standards, or dynamically changing 
operation conditions of technical systems.

 Dynamic adaptation to environment
 Dynamic adaptation to threats (DARPA)
 Extended mission capabilities
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Fault toleranceFault tolerance
 The RecoNet project

1. Packet-oriented fault detection on 
communication lines 

2. Detections of defect nodes
3. Task migration on node failure
4. Load balancing computation
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High performance parallel computingHigh performance parallel computing
Traditional parallel implementation flow

ApplicationApplication
11

22 33

44 55 66 77

Virtual TopologyVirtual Topology Physical TopologyPhysical Topology

11 22 33 44

Exploiting reconfigurable topology

ApplicationApplication
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Physical TopologyPhysical Topology



Organic Computing 22

Dr. rer. nat. Christophe BobdaDr. rer. nat. Christophe Bobda
  Lehrstuhl für Hardware-Software-Co-DesignLehrstuhl für Hardware-Software-Co-Design

Reconfigurable architecturesReconfigurable architectures

Reconfigurable Computing 22
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Fine-grained Fine-grained 
reconfigurable devicesreconfigurable devices



Organic Computing 24

PALs and PLAsPALs and PLAs

 Pre-fabricated building block of many AND/OR gates (or 
NOR, NAND)

 "Personalized" by making or breaking connections among 
the gates

Programmable Array Block Diagram for Sum of Products Form

Inputs 

Dense array of 
AND gates Product  

terms 

Dense array of 
OR gates 

Outputs 
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Complex Programmable Logic DevicesComplex Programmable Logic Devices

 Complex PLDs (CPLD) typically combine PAL 
combinational logic with Flip Flops
 Organized into logic blocks connected in an interconnect 

matrix
 Combinational or registered output

 Usually enough logic for simple counters, state 
machines, decoders, etc.

 CPLDs logic is not enough for complex operation
 FPGAs have much more logic than CPLDs

 e.g. Xilinx Coolrunner II, etc.
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Xilinx Coolrunner CPLDXilinx Coolrunner CPLD

Function Bloc Interconnection matrixInterconnection matrix

Macrocells for input 
connection

Macrocells for output 
connection
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Field Programmable Gate Arrays (FPGAs)Field Programmable Gate Arrays (FPGAs)

Introduced in 1985 by Xilinx
Roughly seen, an FPGA consist of:
3. A set of programmable macro cells
4. A programmable interconnection network
5. Programmable input/outputs
6. Subparts of a (complex) function are 

implemented in macro cells which are then 
connected to build the complete function

7. The IO can be programmed to drive the macro 
cell's inputs or to be driven by the macro cell's 
outputs

8. Unlike traditional application-specific integrated 
circuit (ASIC), function is specified by the user 
after the device is manufactured

9. Physical structure and programming method is 
vendor dependant

Programmable Programmable 
macro cellmacro cell

Programmable I/O Programmable I/O 

Programmable routingProgrammable routing
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FPGA StructureFPGA Structure

Typical organization 
 Symmetrical Array

 2 D array of processing elements (PE) 
embedded in an interconnection 
network

 Interconnection points at the 
horizontal-vertical  intersection

 Row based
 Rows of Processing elements
 Horizontal routing via horizontal 

channels
 Channels divided in segments
 Vertical connections via dedicated 

vertical tracks (not on the graphic)

Symmetrical Array

Row-based
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FPGA StructureFPGA Structure

Typical organization (cont) 
 Sea of gates

 2 D array of processing elements
 No space left aside the PEs for 

routing
 Connection is done on a separate 

layer on top of the cells
 Hierarchical

 Hierarchically placed Macro cells
 Low-level macro cells are grouped to 

build the higher-level's PEs 

Sea of Gates

Hierarchical
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FPGA Function generatorsFPGA Function generators

 LUTLUT
 LUT are used as function generators in LUT are used as function generators in 

SRAM-based FPGASRAM-based FPGA
 A function is implemented by writing all A function is implemented by writing all 

possible values that the function can take possible values that the function can take 
in the LUTin the LUT

 The inputs values are used to address the The inputs values are used to address the 
LUT and retrieve the value of the function LUT and retrieve the value of the function 
corresponding the the input valuescorresponding the the input values

 A k-inputs LUT can implement up to 2A k-inputs LUT can implement up to 2  kk  
different functionsdifferent functions

 A k-input LUT has  2A k-input LUT has  2  k k SRAM locationsSRAM locations

a XOR b a   b
0  0   0
0  1   1
1  0   1
1  1   0

0
1
1
0

a
b a Xor b

LUT
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FPGA Function generatorsFPGA Function generators

LUT Example: Implement theLUT Example: Implement the
function using:function using:

 2-input LUTs2-input LUTs
 3-input LUTs3-input LUTs
 4-input LUTs4-input LUTs

AF = ABD + BC BCD +

A
B
D
B
C
D
A
B
C

F

A
B
D
B
C
D
A
B
C

C
D

A
B

F F
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FPGA Function generatorsFPGA Function generators

Multiplexers (MUX)Multiplexers (MUX)
 A 2A 2  kkx1 MUX can implement up to 2x1 MUX can implement up to 2  kk  

different functionsdifferent functions
 A function is implemented by writing A function is implemented by writing 

all possible values that the function all possible values that the function 
can take as constant at the MUX-can take as constant at the MUX-
InputsInputs

 The selector-values are used to pass The selector-values are used to pass 
the corresponding input to the MUX the corresponding input to the MUX 
output output 

 Complex function can be decomposed Complex function can be decomposed 
and implement using many MUXes and implement using many MUXes 
using the using the Shannon expansion theoremShannon expansion theorem

Y 
  4 x 1 
  MUX 

s0s1

C0

C1

C2

C3

0
0
0
1

Y s1 s0
0  0   C0
0  1   C1
1  0   C2
1  1   C3

0
0
0
1

=AND
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Hybrid FPGAsHybrid FPGAs

1.1. The Xilinx VirtexII-ProThe Xilinx VirtexII-Pro
2.2. Basic structure: VirtexIIBasic structure: VirtexII
3.3. Additional featuresAdditional features

1.1. Up to 4 hard-core embedded IBM  Up to 4 hard-core embedded IBM  
power pc 405 RISC processors power pc 405 RISC processors 
with 300+ Mhzwith 300+ Mhz

2.2. Advanced 18bit x 18bit embedded Advanced 18bit x 18bit embedded 
multipliersmultipliers

3.3. Dual-ported RAMDual-ported RAM
4.4. Embedded high speed serial Embedded high speed serial 

RocketIO multi-gigabit transceiversRocketIO multi-gigabit transceivers
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Hybrid FPGAsHybrid FPGAs

1.1. The Altera ExcaliburThe Altera Excalibur
2.2. Specific features: Specific features: 

1.1. One ARM922T 32-bits RISC One ARM922T 32-bits RISC 
processor with 200 Mhzprocessor with 200 Mhz

2.2. Embedded multipliersEmbedded multipliers
3.3. Internal single and dual-ported RAM Internal single and dual-ported RAM 

and SDRAM controllerand SDRAM controller
4.4. Expansion bus interface for flash- Expansion bus interface for flash- 

RAM connectionRAM connection
5.5. Embedded SignalTap logic analyzerEmbedded SignalTap logic analyzer
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Coarse-grained Coarse-grained 
reconfigurable devicesreconfigurable devices
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Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

 With the LUT as function generators, FPGA can be 
seen as general purpose devices.

 Like any general purpose device, they are flexible and 
“inefficient“

 Flexible because any n-variables Boolean function 
can be implemented in a n-input LUT. 

 Inefficient since complex functions must be 
implemented in many LUTs at different locations.

➔ The connections among the LUTs is done using 
the routing matrix wich increases the signal 
delays

 LUT implementation is usually slower than dircect 
„wiring“
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Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

ExampleExample: : Implement the function Implement the function 
using 2-input LUTsusing 2-input LUTs. . 
LUTs are grouped in logic blocks (LB). 2 2-input LUT per LBLUTs are grouped in logic blocks (LB). 2 2-input LUT per LB
Connection inside a LB is efficient (direct)Connection inside a LB is efficient (direct)
Connection outside LBs are slow (Connection matrix)Connection outside LBs are slow (Connection matrix)

AF = ABD + AC BCD +

A
B
D

A
C
DA

B
C

F

Connection
 matrix
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Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

Idea:Idea: Implement frequently used blocks as hard-core module in  Implement frequently used blocks as hard-core module in 
the devicethe device

A
B
D

A
C
DA

B
C

F

Connection
 matrix

A
B
C
D

F
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Coarse grained reconfigurable devicesCoarse grained reconfigurable devices

 Overcome the inefficiency of FPGAs by providing 
coarse grained functional units (Adder, multipliers, 
integrators, etc...), efficiently implemented

 Advantage: Very efficient in term of speed (no need 
for connections over connection matrice for basic 
operators)

 Advantage: Direct wiring istead of LUT 
implementation

 Usually an array  of programmable and identical 
processing element (PE) capable of executing few 
operations like addition and multiplication.

 Depending on the manufacturer, the functional units 
communicate via busses or can be directly connected 
using programmable routing matrices
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Coarse grained reconfigurable devicesCoarse grained reconfigurable devices

 Memory exist between and inside the PEs.
 Several other functional units according to the 

manufacturer.
 A PE is usually an 8-bit, 16-bit or 32-bit tiny ALU 

which can be configured to executed only one 
operation on a given period (until the next 
configuration)

 Communication among the PEs  can be either packet 
oriented (on busses) or point-to-point (using crossbar 
switches)

 Since each vendor has its own implementation 
approach, study will be done by mean of few 
examples. Considered are: PACT XPP, Quicksilver 
ACM, NEC DRP, picoChip, IPflex DAP/DNA
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The PACT XPP – Overall structureThe PACT XPP – Overall structure

XPP (Extreme Processing Platform) is 
a hierarchical structure consisting of:
 An array of Processing Array Elements 

(PAE) grouped in clusters called 
Processing Arrays (PA)

 PAC = Processing Array Cluster (PAC) + 
Configuration manager (CM)

 A hierarchical configuration tree
 Local CMs manage the configuration at 

the PA level
 The local CMs access the local 

configuration memory while Supervisor 
CM (SCM) access external memory and 
supervise the whole configuration 
process on the device 
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The PACT XPP - InterfaceThe PACT XPP - Interface
 Interfaces are available inside the 

chip
 Number and type of interfaces vary 

from device to device
 On the XPP42-A1:
 6 internal interfaces consisting of:
 4 identical general purpose I/O on-chip 

interfaces (bottom left, upper left, upper 
right, and bottom right)

 One configuration manager (not shown 
on the picture)

 One JTAG (Join Test Action Group, 
"IEEE Standard 1149.1") Boundary scan 
interface or for testing purpose

Interfaces
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The Quicksilver ACM - ArchitectureThe Quicksilver ACM - Architecture

Structure: Fractal like structure
 Hierarchically group of four nodes 

with full communication among the 
nodes

 4 lower level nodes are grouped in 
a higher level node

 The lowest level consist of 4 
heterogeneous processing nodes

 The connection is done in a Matrix 
Interconnect Network (MIN)

 A system controller
 Various I/O
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The Quicksilver ACM – The processing nodeThe Quicksilver ACM – The processing node

The node wrapper Envelopes the 
algorithmic engine and presents an 
identical interface to neighbouring
nodes. It features:
 A MIN interface to support the 

communication among nodes via 
the MIN-network 

 A hardware task manager for task 
management at the node level

 A DMA engine
 Dedicated I/O circuitry
 Memory controllers
 Data distributors and aggregators

The ACM Node-Wrapper
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The NEC DRP – ArchitectureThe NEC DRP – Architecture

The NEC Dynamically 
Reconfigurable Processor (DRP)
consists of: 
 A set of byte oriented processing 

elements (PE)
 A programmable interconnection 

network for communication among 
the PEs.

  A sequencer. Can be programmed 
as finite state machine (FSM) to 
control the reconfiguration process

 Memory around the device for 
storing configuration and 
computation data

 Various Interfaces
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The NEC DRP - The Processing ElementThe NEC DRP - The Processing Element

 ALU: ordinary byte 
arithmetic/logic operations 

 DMU (data management unit): 
handles byte select, shift, mask, 
constant generation, etc., as well as 
bit manipulations 

 An instruction dictates ALU/DMU 
operations and inter-PE connections

 Source/destination operands can 
either from/to
 its own register file
 other PEs (i.e., flow through) 

 Instruction pointer (IP) is provided 
from STC (state transition controller)
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The IPflex DAP/DNA - StructureThe IPflex DAP/DNA - Structure

The IPflex DAP/DNA has the structure 
of a System on Chip (SoC) with an 
embedded FPGA. It features:
 Integrated RISC core
 Carry some computation
 Controls the reconfiguration 

process
 A Distributed Network Architecture 

(DNA) matrix (matrix of 
configurable operation units)

 Communication over an internal bus
 Different caches for data, 

instructions and configuration
 I/O and memory Interface 

controllers  
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The picoChip - ArchitectureThe picoChip - Architecture

 Hundreds of array elements each 
with versatile 16-bit processor 
and local data

 heterogeneous architecture with 
four types of elements optimized 
for different tasks (DSP or 
wireless function).

 Interface for:
 SRAM
 Host communication
 External systems
 Inter picoChip system 


