
Organic Computing 1

Dr. rer. nat. Christophe BobdaDr. rer. nat. Christophe Bobda
Prof. Dr. Rolf WankaProf. Dr. Rolf Wanka

 Department of Computer Science 12Department of Computer Science 12
 Hardware-Software-Co-DesignHardware-Software-Co-Design

Organic ComputingOrganic Computing

Organic Computing 2

Reconfigurable Computing Reconfigurable Computing
PlatformsPlatforms

Organic Computing 3

The Von Neumann ComputerThe Von Neumann Computer
 Principle

In 1945, the mathematician Von Neumann (VN)
demonstrated in study of computation that a
computer could have a
simple structure,
capable of executing any kind of program,
given a properly programmed control unit,
without the need of hardware modification

Organic Computing 4

The Von Neumann ComputerThe Von Neumann Computer
 Structure

1. A memory for storing
program and data. The
memory consists of the
word with the same length

3. A control unit (control
path) featuring a program
counter for controlling
program execution

5. An arithmetic and logic
unit(ALU) also called data
path for program
execution

Organic Computing 5

The Von Neumann ComputerThe Von Neumann Computer
 Coding

A program is coded as a set of instructions to be
sequentially executed

 Program execution
1. Instruction Fetch (IF): The next instruction to be

executed is fetched from the memory
2. Decode (D): The instruction is decoded to determine the

operation
3. Read operand (R): The operands are read from the

memory
4. Execute (EX): The required operation is executed on the

ALU
5. Write result (W): The result of the operation is written

back to the memory
6. Instruction execution in Cycle (IF, D, R, EX, W)

Organic Computing 6

The Von Neumann ComputerThe Von Neumann Computer
Advantage:

 Flexibility: any well coded program can be executed

Drawbacks
 Speed efficiency: Not efficient, due to the sequential

program execution (temporal resource sharing).
 Resource efficiency: Only one part of the hardware

resources is required for the execution of an
instruction. The rest remains idle.

 Memory access: Memories are about 10 time slower
than the processor

Drawbacks are compensated using high clock speed,
pipelining, caches, instruction pre-fetching, etc.

Organic Computing 7

The Von Neumann ComputerThe Von Neumann Computer
Sequential execution
tcycle = cycle execution time
One instruction needs tinstrcution = 5*tcycle

3 instructions are executed in 15*tcycle

Pipelining:
One instruction needs tinstrcution = 5*tcycle

no improvement.
3 instructions need 7*tcycle in the ideal
case.
9*tcycle on a Harvard architecture.
➢ Increased throughput

➢ Even with pipeline and other
improvement like cache, the
execution remain sequential.

Organic Computing 8

Domain specific processorsDomain specific processors
Goal:
Overcome the drawback of the von Neumann computer.

Optimize the Data path for a given class of applications
DSP (Digital Signal Processors) :
Signal processing applications are usually multiply
accumulate (MAC) dominated.

 The data path is optimized to execute one or many
MACs in only one cycle.

 Instruction fetching and decoding overhead is
removed

 Memory access is limited by directly processing
the input dataflow

Organic Computing 9

Domain specific processorsDomain specific processors
DSPs:
Designed for high-performance, repetitive,
numerically intensive tasks

In one Instruction Cycle, can do:
 many MAC-operations
 many memory accesses
 special support for efficient looping

The hardware contains:
 One or more MAC-Units
 Multi-ported on-chip and off-chip memories
 Multiple on-chip busses
 Address generation unit supporting addressing

modes tailored for DSP-applications

Organic Computing 10

Application specific processorsApplication specific processors
Optimize the complete circuit for a given function
ASIC: Application Specific Integrated Circuit.
Optimization is done by implementing the inherent
parallel structure on a chip

 The data path is optimized for only one application.
 Instruction fetching and decoding overhead is

removed
 Memory access is limited by directly processing

the input data flow
 Exploitation of parallel computation

Organic Computing 11

Application specific processorsApplication specific processors
ASIC Example:
Implementation of a VN computer
if (a < b) then
{

d = a+b;
c = a*a;

}
else
{

d = a+1;
c = b-1;

}

At least 5 instructions
run-time >= 5*tinstruction

ASIC implementation:
The complete execution is done in
parallel in one clock cycle
run-time = tclock= delay longest path
from input to output

The VN computer needs to be clocked
at least 5 time faster

Organic Computing 12

ConclusionConclusion
 Von Neumann computer:

General purpose, used for any kind of function.
High degree of flexibility.

However, high restrictions on the program coding and execution
scheme

the program have to adapt to the machine
 DSPs are Adapted for a class of applications.

Flexibility and efficiency only for a given class of applications.

 ASICs are
Tailored for one application.

Very efficient in speed and resource.
Cannot re-adapt to a new application

Not flexible

Organic Computing 13

Reconfigurable device: GoalReconfigurable device: Goal
The Ideal device should combine:

 the flexibility of the Von Neumann computer
 the efficiency of ASICs

The ideal device should be able to
 Optimally implement an application at a given time
 Re-adapt to allow the optimal implementation of a new

application.
We call such a device a reconfigurable device.

Organic Computing 14

Flexibility vs EfficiencyFlexibility vs Efficiency

Fl
ex

ib
ili

ty

Efficiency

ASIC
Application

specific
computing

Von
Neumann
General
purpose

computing Reconfigurable
systems

Reconfigurable
Computing

DSP
Domain
specific

computing

Organic Computing 15

Fields of applicationFields of application
 Rapid prototyping

 Post fabrication customization

 Multi-modal computing tasks

 Adaptive computing systems

 Fault tolerance

 High performance parallel computing

Organic Computing 16

Rapid PrototypingRapid Prototyping
Testing hardware in real conditions before
fabrication

 Software simulation
➔ Relatively inexpensive
➔ Slow
➔ Accuracy ?

 Hardware emulation
➔ Hardware testing under real operation

conditions
➔ Fast
➔ Accurate
➔ Allow several iterations

APTIX System Explorer

ITALTEL FLEXBENCH

Organic Computing 17

Post fabrication customizationPost fabrication customization
Time to market advantage

 Ship the first version of a product
 Remote upgrading with new

product versions
 Remote repairing

Manufacturer

Organic Computing 18

Multi-modal computing tasksMulti-modal computing tasks
Reconfigurable vehicles, mobile
phones, etc..

 Built-in Digital Camera
 Video phone service
 Games
 Internet
 Navigation system
 Emergency
 Diagnostics
 Different standard and protocols
 Monitoring
 Entertainment

service request

Configuration

Organic Computing 19

Adaptive computing systemsAdaptive computing systems
Computing systems that are able to adapt
their behaviour and structure to changing
operating and environmental conditions,
time-varying optimization objectives, and
physical constraints like changing protocols,
new standards, or dynamically changing
operation conditions of technical systems.

 Dynamic adaptation to environment
 Dynamic adaptation to threats (DARPA)
 Extended mission capabilities

Organic Computing 20

Fault toleranceFault tolerance
 The RecoNet project

1. Packet-oriented fault detection on
communication lines

2. Detections of defect nodes
3. Task migration on node failure
4. Load balancing computation

Organic Computing 21

High performance parallel computingHigh performance parallel computing
Traditional parallel implementation flow

ApplicationApplication
11

22 33

44 55 66 77

Virtual TopologyVirtual Topology Physical TopologyPhysical Topology

11 22 33 44

Exploiting reconfigurable topology

ApplicationApplication

11

22 3

5 6 74
Virtual TopologyVirtual Topology

11

22 3

5 64 77

Physical TopologyPhysical Topology

Organic Computing 22

Dr. rer. nat. Christophe BobdaDr. rer. nat. Christophe Bobda
 Lehrstuhl für Hardware-Software-Co-DesignLehrstuhl für Hardware-Software-Co-Design

Reconfigurable architecturesReconfigurable architectures

Reconfigurable Computing 22

Organic Computing 23

Fine-grained Fine-grained
reconfigurable devicesreconfigurable devices

Organic Computing 24

PALs and PLAsPALs and PLAs

 Pre-fabricated building block of many AND/OR gates (or
NOR, NAND)

 "Personalized" by making or breaking connections among
the gates

Programmable Array Block Diagram for Sum of Products Form

Inputs

Dense array of
AND gates Product

terms

Dense array of
OR gates

Outputs

Organic Computing 25

Complex Programmable Logic DevicesComplex Programmable Logic Devices

 Complex PLDs (CPLD) typically combine PAL
combinational logic with Flip Flops
 Organized into logic blocks connected in an interconnect

matrix
 Combinational or registered output

 Usually enough logic for simple counters, state
machines, decoders, etc.

 CPLDs logic is not enough for complex operation
 FPGAs have much more logic than CPLDs

 e.g. Xilinx Coolrunner II, etc.

Organic Computing 26

Xilinx Coolrunner CPLDXilinx Coolrunner CPLD

Function Bloc Interconnection matrixInterconnection matrix

Macrocells for input
connection

Macrocells for output
connection

Organic Computing 27

Field Programmable Gate Arrays (FPGAs)Field Programmable Gate Arrays (FPGAs)

Introduced in 1985 by Xilinx
Roughly seen, an FPGA consist of:
3. A set of programmable macro cells
4. A programmable interconnection network
5. Programmable input/outputs
6. Subparts of a (complex) function are

implemented in macro cells which are then
connected to build the complete function

7. The IO can be programmed to drive the macro
cell's inputs or to be driven by the macro cell's
outputs

8. Unlike traditional application-specific integrated
circuit (ASIC), function is specified by the user
after the device is manufactured

9. Physical structure and programming method is
vendor dependant

Programmable Programmable
macro cellmacro cell

Programmable I/O Programmable I/O

Programmable routingProgrammable routing

Organic Computing 28

FPGA StructureFPGA Structure

Typical organization
 Symmetrical Array

 2 D array of processing elements (PE)
embedded in an interconnection
network

 Interconnection points at the
horizontal-vertical intersection

 Row based
 Rows of Processing elements
 Horizontal routing via horizontal

channels
 Channels divided in segments
 Vertical connections via dedicated

vertical tracks (not on the graphic)

Symmetrical Array

Row-based

Organic Computing 29

FPGA StructureFPGA Structure

Typical organization (cont)
 Sea of gates

 2 D array of processing elements
 No space left aside the PEs for

routing
 Connection is done on a separate

layer on top of the cells
 Hierarchical

 Hierarchically placed Macro cells
 Low-level macro cells are grouped to

build the higher-level's PEs

Sea of Gates

Hierarchical

Organic Computing 30

FPGA Function generatorsFPGA Function generators

 LUTLUT
 LUT are used as function generators in LUT are used as function generators in

SRAM-based FPGASRAM-based FPGA
 A function is implemented by writing all A function is implemented by writing all

possible values that the function can take possible values that the function can take
in the LUTin the LUT

 The inputs values are used to address the The inputs values are used to address the
LUT and retrieve the value of the function LUT and retrieve the value of the function
corresponding the the input valuescorresponding the the input values

 A k-inputs LUT can implement up to 2A k-inputs LUT can implement up to 2 kk
different functionsdifferent functions

 A k-input LUT has 2A k-input LUT has 2 k k SRAM locationsSRAM locations

a XOR b a b
0 0 0
0 1 1
1 0 1
1 1 0

0
1
1
0

a
b a Xor b

LUT

Organic Computing 31

FPGA Function generatorsFPGA Function generators

LUT Example: Implement theLUT Example: Implement the
function using:function using:

 2-input LUTs2-input LUTs
 3-input LUTs3-input LUTs
 4-input LUTs4-input LUTs

AF = ABD + BC BCD +

A
B
D
B
C
D
A
B
C

F

A
B
D
B
C
D
A
B
C

C
D

A
B

F F

Organic Computing 32

FPGA Function generatorsFPGA Function generators

Multiplexers (MUX)Multiplexers (MUX)
 A 2A 2 kkx1 MUX can implement up to 2x1 MUX can implement up to 2 kk

different functionsdifferent functions
 A function is implemented by writing A function is implemented by writing

all possible values that the function all possible values that the function
can take as constant at the MUX-can take as constant at the MUX-
InputsInputs

 The selector-values are used to pass The selector-values are used to pass
the corresponding input to the MUX the corresponding input to the MUX
output output

 Complex function can be decomposed Complex function can be decomposed
and implement using many MUXes and implement using many MUXes
using the using the Shannon expansion theoremShannon expansion theorem

Y
 4 x 1
 MUX

s0s1

C0

C1

C2

C3

0
0
0
1

Y s1 s0
0 0 C0
0 1 C1
1 0 C2
1 1 C3

0
0
0
1

=AND

Organic Computing 33

Hybrid FPGAsHybrid FPGAs

1.1. The Xilinx VirtexII-ProThe Xilinx VirtexII-Pro
2.2. Basic structure: VirtexIIBasic structure: VirtexII
3.3. Additional featuresAdditional features

1.1. Up to 4 hard-core embedded IBM Up to 4 hard-core embedded IBM
power pc 405 RISC processors power pc 405 RISC processors
with 300+ Mhzwith 300+ Mhz

2.2. Advanced 18bit x 18bit embedded Advanced 18bit x 18bit embedded
multipliersmultipliers

3.3. Dual-ported RAMDual-ported RAM
4.4. Embedded high speed serial Embedded high speed serial

RocketIO multi-gigabit transceiversRocketIO multi-gigabit transceivers

Organic Computing 34

Hybrid FPGAsHybrid FPGAs

1.1. The Altera ExcaliburThe Altera Excalibur
2.2. Specific features: Specific features:

1.1. One ARM922T 32-bits RISC One ARM922T 32-bits RISC
processor with 200 Mhzprocessor with 200 Mhz

2.2. Embedded multipliersEmbedded multipliers
3.3. Internal single and dual-ported RAM Internal single and dual-ported RAM

and SDRAM controllerand SDRAM controller
4.4. Expansion bus interface for flash- Expansion bus interface for flash-

RAM connectionRAM connection
5.5. Embedded SignalTap logic analyzerEmbedded SignalTap logic analyzer

Organic Computing 35

Coarse-grained Coarse-grained
reconfigurable devicesreconfigurable devices

Organic Computing 36

Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

 With the LUT as function generators, FPGA can be
seen as general purpose devices.

 Like any general purpose device, they are flexible and
“inefficient“

 Flexible because any n-variables Boolean function
can be implemented in a n-input LUT.

 Inefficient since complex functions must be
implemented in many LUTs at different locations.

➔ The connections among the LUTs is done using
the routing matrix wich increases the signal
delays

 LUT implementation is usually slower than dircect
„wiring“

Organic Computing 37

Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

ExampleExample: : Implement the function Implement the function
using 2-input LUTsusing 2-input LUTs. .
LUTs are grouped in logic blocks (LB). 2 2-input LUT per LBLUTs are grouped in logic blocks (LB). 2 2-input LUT per LB
Connection inside a LB is efficient (direct)Connection inside a LB is efficient (direct)
Connection outside LBs are slow (Connection matrix)Connection outside LBs are slow (Connection matrix)

AF = ABD + AC BCD +

A
B
D

A
C
DA

B
C

F

Connection
 matrix

Organic Computing 38

Once again: General purpose vs Special purposeOnce again: General purpose vs Special purpose

Idea:Idea: Implement frequently used blocks as hard-core module in Implement frequently used blocks as hard-core module in
the devicethe device

A
B
D

A
C
DA

B
C

F

Connection
 matrix

A
B
C
D

F

Organic Computing 39

Coarse grained reconfigurable devicesCoarse grained reconfigurable devices

 Overcome the inefficiency of FPGAs by providing
coarse grained functional units (Adder, multipliers,
integrators, etc...), efficiently implemented

 Advantage: Very efficient in term of speed (no need
for connections over connection matrice for basic
operators)

 Advantage: Direct wiring istead of LUT
implementation

 Usually an array of programmable and identical
processing element (PE) capable of executing few
operations like addition and multiplication.

 Depending on the manufacturer, the functional units
communicate via busses or can be directly connected
using programmable routing matrices

Organic Computing 40

Coarse grained reconfigurable devicesCoarse grained reconfigurable devices

 Memory exist between and inside the PEs.
 Several other functional units according to the

manufacturer.
 A PE is usually an 8-bit, 16-bit or 32-bit tiny ALU

which can be configured to executed only one
operation on a given period (until the next
configuration)

 Communication among the PEs can be either packet
oriented (on busses) or point-to-point (using crossbar
switches)

 Since each vendor has its own implementation
approach, study will be done by mean of few
examples. Considered are: PACT XPP, Quicksilver
ACM, NEC DRP, picoChip, IPflex DAP/DNA

Organic Computing 41

The PACT XPP – Overall structureThe PACT XPP – Overall structure

XPP (Extreme Processing Platform) is
a hierarchical structure consisting of:
 An array of Processing Array Elements

(PAE) grouped in clusters called
Processing Arrays (PA)

 PAC = Processing Array Cluster (PAC) +
Configuration manager (CM)

 A hierarchical configuration tree
 Local CMs manage the configuration at

the PA level
 The local CMs access the local

configuration memory while Supervisor
CM (SCM) access external memory and
supervise the whole configuration
process on the device

Organic Computing 42

The PACT XPP - InterfaceThe PACT XPP - Interface
 Interfaces are available inside the

chip
 Number and type of interfaces vary

from device to device
 On the XPP42-A1:
 6 internal interfaces consisting of:
 4 identical general purpose I/O on-chip

interfaces (bottom left, upper left, upper
right, and bottom right)

 One configuration manager (not shown
on the picture)

 One JTAG (Join Test Action Group,
"IEEE Standard 1149.1") Boundary scan
interface or for testing purpose

Interfaces

Organic Computing 43

The Quicksilver ACM - ArchitectureThe Quicksilver ACM - Architecture

Structure: Fractal like structure
 Hierarchically group of four nodes

with full communication among the
nodes

 4 lower level nodes are grouped in
a higher level node

 The lowest level consist of 4
heterogeneous processing nodes

 The connection is done in a Matrix
Interconnect Network (MIN)

 A system controller
 Various I/O

Organic Computing 44

The Quicksilver ACM – The processing nodeThe Quicksilver ACM – The processing node

The node wrapper Envelopes the
algorithmic engine and presents an
identical interface to neighbouring
nodes. It features:
 A MIN interface to support the

communication among nodes via
the MIN-network

 A hardware task manager for task
management at the node level

 A DMA engine
 Dedicated I/O circuitry
 Memory controllers
 Data distributors and aggregators

The ACM Node-Wrapper

Organic Computing 45

The NEC DRP – ArchitectureThe NEC DRP – Architecture

The NEC Dynamically
Reconfigurable Processor (DRP)
consists of:
 A set of byte oriented processing

elements (PE)
 A programmable interconnection

network for communication among
the PEs.

 A sequencer. Can be programmed
as finite state machine (FSM) to
control the reconfiguration process

 Memory around the device for
storing configuration and
computation data

 Various Interfaces

Organic Computing 46

The NEC DRP - The Processing ElementThe NEC DRP - The Processing Element

 ALU: ordinary byte
arithmetic/logic operations

 DMU (data management unit):
handles byte select, shift, mask,
constant generation, etc., as well as
bit manipulations

 An instruction dictates ALU/DMU
operations and inter-PE connections

 Source/destination operands can
either from/to
 its own register file
 other PEs (i.e., flow through)

 Instruction pointer (IP) is provided
from STC (state transition controller)

Organic Computing 47

The IPflex DAP/DNA - StructureThe IPflex DAP/DNA - Structure

The IPflex DAP/DNA has the structure
of a System on Chip (SoC) with an
embedded FPGA. It features:
 Integrated RISC core
 Carry some computation
 Controls the reconfiguration

process
 A Distributed Network Architecture

(DNA) matrix (matrix of
configurable operation units)

 Communication over an internal bus
 Different caches for data,

instructions and configuration
 I/O and memory Interface

controllers

Organic Computing 48

The picoChip - ArchitectureThe picoChip - Architecture

 Hundreds of array elements each
with versatile 16-bit processor
and local data

 heterogeneous architecture with
four types of elements optimized
for different tasks (DSP or
wireless function).

 Interface for:
 SRAM
 Host communication
 External systems
 Inter picoChip system

