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 Organization and design of autonomous systems Organization and design of autonomous systems 
 Terminology and ConceptsTerminology and Concepts

 ArchitectureArchitecture
 Functional architectureFunctional architecture
 Operational architecture
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Operational ArchitectureOperational Architecture
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Autonomous systems - operational ArchitectureAutonomous systems - operational Architecture

 In the previous section a general picture is given what 
capabilities an autonomous system
 6 examples of functional architectures give an overview the 

essential capabilities a mobile robot should possess.
 Most of the system design decisions have to be made at the 

operational level 
 At this level the environmental constraints are put on the 

systems capabilities
 In this section, we will 

 describe the different operational constraints that have to be taken 
into account in an operational architecture. 

 illustration on one example: the operational architecture of the 
Autonomous Remote Agent at Deep Space 1
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Autonomous systems - operational ArchitectureAutonomous systems - operational Architecture

 The operations meant are the elementary operations of the 
current virtual robot level 
 Elementary operations of a virtual robot are equivalent with the 

instructions of a virtual machine 
 In this section we will 

 describe the appearance of elementary operations at different levels 
of abstraction, 

 how environmental constraints could be represented and 
 how the constraints could be coupled with the elementary 

operations of the different levels
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Operational Architecture – TimeOperational Architecture – Time

 Very important and common constraint on autonomous 
systems 
 the time that is needed to perform an operation, 
 the time that is needed to plan an operation, 
 the time that is needed to acquire the information needed for an 

operation, 
 the time that is needed to verify the success of an operation 

 The time constraint is much stronger at the lower levels of 
the autonomous system than at the higher levels of the 
system 
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Operational Architecture – TimeOperational Architecture – Time
 Example: the relative timing between the six hierarchical layers of 

NASREM
 At the highest level, the complete backlog of the work for this mission is 

maintained, and the planning horizon is the end of the entire mission
 At each lower level, plans are formulated or selected to accomplish the 

instructions from the higher level
 Each task in the higher level plan is decomposed into a lower level plan of 

lower level operations: subtasks 
 The planning horizon thus shrinks exponentially at each successively lower 

level of the hierarchy
 the rate of operation completions increases at lower levels of the hierarchy, 

and decreases at the upper levels of the hierarchy
- At the lowest (servo) level, the duration of an operation is fixed, one millisecond
- At the higher levels the durations of the operations are variable

 The higher in the hierarchy, the more pronounced this nonregularity 
becomes.
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Operational Architecture – TimeOperational Architecture – Time
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Operational Architecture – SynchronizationOperational Architecture – Synchronization

 On a certain level the instructions from a higher level have 
to be decomposed into jobs for the different subsystems

 If there is only one subsystem available for a certain 
subtask, the assignment is not difficult
 The remaining complexity is then in the dependencies between the 

different subtasks 
 If more than one subsystem is available, communication 

between those subsystems will lead to the need to 
 synchronize the execution of the jobs at the different autonomous 

subsystems
 Synchronization constraints between concurrent operations 

can be given with the interval relationships of Allen 
 An interval a is represented by two events, its moment of initiation a’ 

and termination a"
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Operational  Architecture – SynchronizationOperational  Architecture – Synchronization

 The various possible relationships between two intervals 
a and b can then be described by the following relations 
between the initiation and termination events of both 
intervals

 The operator    Indicates a temporal order between two 
event and the operator     Indicates simultaneity of two 
events
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operational Architecture – Synchronizationoperational Architecture – Synchronization
 The interval relation between a and b can be reverted

 For instance 'a equals b' is the reverse 'b equals a' 
 For the six other indicated relations the reverted relations are not 

equivalent with the original relations
- The inverse of 'a before b' is for instance 'b after a', 
- The inverse of 'a during b' is for instance 'b contains a'. 
- In total 13 different relations between a and b can be indicated
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Operational Architecture – OrderingOperational Architecture – Ordering

 If on the current level of the autonomous system only one 
subsystem or virtual machine is available to 
execute/interpret the instructions, the task given to this level 
can be decomposed into a set of operations for the lower 
layer

 When no alternative orders of execution are possible, the 
operation can be presented as a list or sequence

 When alternative orders of execution are still possible, the 
operations has to be presented as unordered set, with 
explicit orderings between those operations where such 
relation exist 

 The advantage of the last approach is that the alternatives 
can be used to improve the robustness of the execution
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Operational Architecture – OrderingOperational Architecture – Ordering

 Because there is only one subsystem, no concurrency can 
take place (on this level). 

 The only possible interval relations are before and after. 
 A precedence graph is a visual aid to show this 

relationships
 A precedence graph is a directed acyclic graph, 

representing the ordering constraints between operations
 The precedence graph construct is a widely used 

representation of non-linear operations. 
 Notice that all operations in the graph have to be executed. 
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Operational Architecture – OrderingOperational Architecture – Ordering

 Set of ordering constraints
 Operation1 before Operation2 
 Operation1 before Operation3 
 Operation2 before Operation4 
 Operation3 before Operation4

 two possible sequences 
 (1, 2, 3, 4) and (1, 3, 2, 4)

 splitting in the graph doesn't represent 
if-then-else alternatives, a splitting only 
represents alternative orders

 Complexity of scheduling can be 
prevented by hiding the details of an 
operation
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks
 A task represents the work to be done, or an activity to be 

performed
 A task is a required change in the world that has to be 

performed by the (autonomous) system that is assigned to 
this task
 The system itself is a part of the world

 A task consists typically of an activity which begin is marked 
with an initiation event, and its end with a termination event 

 The state of the world at the initiation event is the initial 
state, the state at the termination event the final state

 The final state has to be equivalent with a 'goal' state for all 
relevant state variables. 

 The difference between the initial and goal state is the 
change the task has to accomplish
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks
 Another possibility to specify a task is to do it with the 

reference to an abstract activity
 The term activity is used here as generic term for a single 

operation, a set or sequence of operations, or even as a 
conjunction of a to-be-planned number of operations at an 
unspecified number of abstraction levels
 The only constraint to be impose is that the specification of the 

abstract activity contains enough information to guess the precise 
instantiation of the operations to perform the task

 Example: mobile robot. A possible specification would be to 
request the activity 'drive 1 meter'
 We assume a very simple world model, just consisting of the robots 

Cartesian position (x; y) and its orientation OE, so x = (x; y; OE)T .
- In the initial state the robot would be at position (x; y) = (0m; 0m), with a 

heading of OE = 0o

- The final position will be (x; y) = (0m; 1m)



Organic Computing 17

Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks
 An alternative specification of the task would be a request 

for the state change ‘y = 0m => y = 1m’ 
 This assumes that all other variables are not affected by this 

transformation
 Implicit description of the task describes only what hast to 

be done and how
 ‘Drive 1 meter’

 An explicit description of a task translates the implicit 
description into a number of operations the robot could 
execute
 This set of operations is called a fully instantiated task plan
 The generation a task plan is typically started by a search through a 

library of activities that the system can perform
  They search-key can be the requested state-change, or the 

abstract activity description
 The result of a successful search is a task plan or a task frame
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks
 A task plan is instantiated, but doesn't have to be fully instantiated
 Both a task frame as a task plan can consist of several partial plans

- abstract descriptions of what have to be done
 The description of a partial plan can be used as a new key for a new 

iteration of the task planner
 In case of non successful search through the library of activities, the 

goal can be separated into a number of sub goals. 
- If for instance the requested state change involves more than one state 

variables, an attempt can be made to decouple the transformations. 
 A complex state change can then be decomposed in that way into a 

set of simpler state changes.
 A search for such a simple state change is often successful 
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks
 If the goal couldn't be decomposed, an attempt can be made to find 

a decomposition by doing for instance a forward state space search.
- For the initial state the set of possible actions is requested, the most 

promising action is applied (in simulation, so the activity library most 
also contain the expected result of the activity)

- depending if there is a metric to judge if the resulting state is closer or 
further from the goal state, the search is continued depth-first or a 
breadth-first manner. 

- Backward search from the goal state is of course also possible.
 A task plan can be represented in different ways, depending on the 

algorithm that is used in the generation process. 
- If a fully instantiated task plan is produced in several hierarchical steps, 

a tree representation is convenient
- An alternative representation is an AND/OR graph. of the task 
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks

 Task Tree:
 A task tree is an ordered tree with the following properties:

- the root node represents the task 
- all other nodes represent a subtask
- the (sub)task is satisfied when all the subtasks represented by the 

siblings are satisfied
- the left to right order of siblings of a node represents the temporal order 

of the fulfillment of the subtask represented by the siblings
 A task tree in which the leave represents the elementary operations 

of the autonomous system at a certain level is called a task 
decomposition
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks

 An AND/OR graph can be used to represent alternatives 
partial plans to satisfy a subgoal of the task. 

 The definition of an AND/OR graph is equivalent with those 
of a task tree, but two types of nodes are distinguished. 
 An AND-node represents a necessary connection. It indicates that 

all siblings have to be executed in the indicated order. 
- Only when all siblings satisfy their subgoal, the (sub)goal of the current 

node is satisfied. 
 The OR-nodes represent alternative connections. It indicates that 

only one sibling has to satisfy its subgoal to satisfy the (sub)goal of 
the current node. 

- The order of the siblings indicates the order in which the alternatives are 
tried. 
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Operational Architecture – Tasks and subtasksOperational Architecture – Tasks and subtasks

Task specification

Task representation

AND Node

OR Node
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Operational Architecture – bindingOperational Architecture – binding
 Strong binding

 If the environmental conditions change, the original plan is adjusted, 
but the impact of this changes on the original plan is as limited as 
possible

 Weak Binding 
 Restrict the a-priori planning to the definition of a set of planning 

instructions, which can be applied in certain environmental 
conditions, foreseen for the intended mission. 

- If the actual conditions correspond to the expectations, the planning 
instructions are performed, and the resulting list of operation are directly 
executed.

 A trade-off is necessary between Strong and Weak Binding 
is preferable
 In a structured environment, the behavior of plan-driven control 

architecture can be prepared, and a plan can become mature by 
frequent use 

 In unknown environments the Weak Binding is favorite. 
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 Most behavior in the real world (either by humans or robots) 

is fraught by with uncertainty
 Actions can fail to have their expected effect, a plan can 

work thousands of times and then suddenly fail 
 Given complete knowledge of the world this faults would not 

occur, but in general the uncertainty cannot be removed 
 Humans are usually quite capable of finding the right 

balance between uncertainty and the effort of acquiring 
additional information 

 A planning system that takes uncertainty into account in this 
natural way does not exist

 Many causes can interrupt the normal execution of a task 
plan

 If no precompiled response to the interrupt is available, we 
call the interrupt an exception 
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 On exception the plan generation system has to be 

activated, which has to replan the task
 Three type of errors can occur during execution : 

 software-errors, hardware errors, and external-errors
 Software errors are associated with logic programming errors in the 

control programs (e.g.: endless loops, division by zero)
 Hardware errors result from a malfunction of the hardware (power 

supply failures, sensor malfunction or actuator breakdown) 
 Soft- and hardware errors are also called internal-errors of the 

system
 External errors are due to a discrepancy between the assumed and 

the real condition of the environment around the autonomous 
system

 External errors can be divided in informational and operational 
errors



Organic Computing 26

Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 An informational error is due to a difference between the 

internal model description of the environment and the 
description derived from sensor information
 Informational errors do not necessarily have to lead to an exception. 

They merely indicate that some corrective action is needed. 
 Operational errors are due to some physical unanticipated 

change of the environment
 Collisions, grasp errors, part slippage, and tool breakdown

 The occurrence (and detection) of an error can lead to an 
interruption of the nominal flow of operations through the 
system 
 As the interrupt can not be handled on the current virtual robot layer, 

an exception message is send to the virtual robot layer above 
 as long as the situation cannot be handled, an exception is 

encountered at several virtual robot layers
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 An autonomous system must be able to handle as much as 

possible situations
 This means that concurrent with the execution of the 

planned task the environment has to be monitored
 Because of the concurrent character of the monitoring, the 

monitoring processes have to be as lightweighted as 
possible

 Initially it is enough to know that the situation is different 
from expected
 As soon as this is detected, the reasoning about the actual situation, 

and how to handle the situation, can start
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 Detection of exceptions

 Some errors that occur during the execution of an activity can hardly 
be missed. 

- No special effort has to be made for instance to detect that your mobile 
robot hit a tree

 The occurrence of obvious errors can generally be predicted from 
earlier measurements

- corrective actions can be used to prevented the system breakdown 
 Several issues must be distinguished in detecting exeption

 In the first place the detection of an exception is not necessarily the 
same as the detection of the cause of the exception.

- In complex systems a deviation from planned behavior can lead to an 
exception at a total distinct place. Both distinct in space as in time

 the monitor should primarily detect the characteristics of an 
exception and not the cause

 The monitor passes the information of a detected exception as fast 
as possible to the other control functions supervising the process 
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions

 The second distinction is related to the moment when a breakdown 
is detected and reported. 

 In the ideal case the monitor is able to predict the breakdown of a 
process before it actually takes place. 

- A breakdown is mostly not an event which comes without 
announcement

- A small error can lead to a gradual degradation of the process 
performance until finally the process breaks down

 Monitoring involves the feature measurements
- The better these features give information on the small errors, the 

earlier the monitor is able to detect the exception 
 An important prerequisite is that a model is available describing the 

relation between small errors and serious ones.
 Such a model contains parameters with which the behavior of the 

system is determined
 Minimal n tests have to be made monitor a process described with a 

model with n parameters
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions

 The monitor activity can be described by the set of conditions to be 
checked

 A major problem with the application of such models and related 
monitor conditions is that the parameters of the model are not 
always observable 

 The parameters in a model are chosen for their correspondence 
with a physical entity and not for their correspondence with some 
sensor measurement

 A transformation is needed between the measurable parameters 
(also called the observables) and the internal parameters of the 
model 

 Extensive research in this area has been performed and various 
parameter estimation techniques (Kalman filtering for instance) have 
been applied

 Once such transformation is found, the monitor conditions can be 
expressed directly in the observables. 
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions

– The problem can also be approached from an other way. 
– Taking each activity that is to be performed, a list of possible 

exceptions is made
– This list is compared with the list of available virtual sensor, and an 

analysis is made what correspondence could be found between the 
sensor signals and occurrence of exceptions

    

Exception at lower level are interrupts at higher level
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions
 Handling of exceptions: Before any corrective action can be 

applied, the current situation has to be analyzed 
 Detection and handling of exceptions can be classified as the 

diagnostic capabilities of the system
- Self healing capability

 The information already available (i.e. backlog, other sensors) has 
to be searched for a hypothesis about the precise cause for the 
occurrence of the exception

 Verification plans can be executed to distinct several possible 
classes of exceptions

 A verification plan can contain several advanced sensing activities
 Sensing could also provide the latest information about the world
 An up-to-date world can be very valuable at this moment

- parts of the current task plan have to be replanned on this data 
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Operational Architecture – Interruption and Operational Architecture – Interruption and 
exceptionsexceptions

 If the exception was caused by an information error, there is a 
change that the values of the other parameters of the world model 
are also wrong 

 The most straight forward method is to inspect all information in the 
world model

- this can be very time consuming
 In practical cases the classification of the exception is used to 

estimate which entities in the world model have a high probability to 
be changed

 No general methodology is found for this approach yet
 The planning of a recovery activity is conceptually equivalent with 

the planning of the activities of the task itself
- The only difference is that the knowledge of the exceptional situation 

can be used to guide the planning process 
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Operational Architecture – ExampleOperational Architecture – Example

 The autonomous Remote Agent
 one of the 12 technologies tested on Deep Space 1 (DS1) 

- spacecraft launched to especially test advanced technologies in space

 Good example for this section 
 Tight deadlines and resource constraints In space 
 no second chances stem from orbital dynamics and rare celestial 

events
 Tight spacecraft resources, (renewable or non-renewable), must be 

carefully managed throughout the mission 
 The operational aspects play important role in the Remote Agent

 Goal: Control of the spacecraft for a long time 
 Two experiments: take the control over the spacecraft for 

respectively 6 hours and for 6 days  
- task normally performed by a ground crew up to 300 personnel
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Operational Architecture – ExampleOperational Architecture – Example

 The remote agent functional model
 The concurrent operation of the subsystems is coordinated by the 

Remote Agent
- A spacecraft is complex system (flight computer, an on board 

processors connected to sophisticated sensors (e.g. star trackers), 
actuator subsystems (e.g. reaction wheels) and science instruments

 The Remote Agent is a layer on top of the flight software. 
 The flight software is a virtual machine layer (complete real-time 

system)
- Special functions for the on board hardware

 The Smart EXEC is responsible for the control of the flight software
 The Remote Agent is a layer below the Ground Control.

- the spacecraft is instructed via the mission profile  
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Operational Architecture – ExampleOperational Architecture – Example
 Monitors are "virtual sensors", that pre-process complex data-

streams so that they can be used in the Remote Agent

    

The functional architecture of the Remote Agent
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Operational Architecture – ExampleOperational Architecture – Example

 The Planner/Scheduler (PS) can create plans that are more flexible 
and better able to take advantage of unexpected opportunities than 
plans created by ground controllers 

 The Remote Agent must not only control the spacecraft, but also 
guarantee that the mission goals are successfully executed on time 
and with the minimum use of resources

 The reliability is guaranteed by a low-level fault protection system, 
the Mode Identification and Reconfiguration (MIR) system

- constant monitoring of the spacecraft. Modelling of the bahavior of the 
spacecraft 

- Failure detection is based on conflicting expectation and sensor values 
- Type of failure determined by the sensor values
- The failure is reported to the Smart Executive, which can ask the MIR 

for the best recovery action
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Operational Architecture – ExampleOperational Architecture – Example

 The remote agent operational model
 The execution control level is filled with two tightly coupled  

controllers 
- a procedural-based approach (EXEC), and 
- a deductive-based approach (MIR) 

 In practice the Smart Executive has the lead, 
- but in principle the MIR could control the spacecraft stand-alone

 To control the spacecraft the MIR has to be fed with a number of 
goals (properties that have to be become true)

- In theory this can be done by the ground operators
- In practice the goals are only fed to the MIR by the Smart Executive in 

the case a plan fails
 The Planner / Scheduler is one abstraction level higher than the 

execution control level
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Operational Architecture – ExampleOperational Architecture – Example
Virtual machine levels for the Deep Space 1
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Operational Architecture – ExampleOperational Architecture – Example

 The continuous operation is achieved by repetition of the following 
cycle:

 1. Retrieve high level goals from the mission profile database
 2. Ask the PS to generate a plan

- The PS receives the goals, scheduling horizon and the state of all 
relevant spacecraft subsystems at the beginning of the scheduling 
horizon 

- The resulting plan is a set of tokens placed on various state variable 
time lines, with temporal constraints between tokens

 3. Send the plan to the executive
- The execution of the current plan continues. The execution of the new 

plan start on the beginning of the next scheduling horizon
- Executes the commands, making sure that the commands succeed. 
- If not, it can create alternative command sequences or ask assistance 

from the MIR
- When the recovery strategies run out of options, it will coordinate 

actions to bring the spacecraft in a "safe state" and request the advice 
of the PS
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Operational Architecture – ExampleOperational Architecture – Example

 4. Repeat the cycle from step 1 when:
- Execution time has reached the end of the scheduling horizon (minus 

the time estimated for the planner to generate a new plan)
- The executive has requested a new plan as a result of a hard failure

 Inside the smart executive the plan execution is straightforward 
- It gets a set of time-lines

– Time-lines consist of a linear sequence of tokens, each of which represents 
an activity that should take place during a temporal period

- A token has a start and end window, and a set of pre- and 
postconditions

- In principle plan execution would be simply waiting for the start time of a 
token, check the pre-conditions, and execute the commands connected 
to the token

- In practice the transition from one token to another token is not that 
smooth, because not all state-variables change their state 
instantaneously
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Operational Architecture – ExampleOperational Architecture – Example

Time in the remote agent

    

 Platform
 RAD6k a 20MHZ
 VxWork OS

 Control lopp frequency
 4khz

 EXEC dispatcher is event 
based

 Plan generator
 8 hours
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Operational Architecture – ExampleOperational Architecture – Example

 Interrupts and exceptions
 Goal: make the Remote Agent as reliable as possible
 Constant monitoring of spacecraft’s state and comparison with 

predicted state
 Discrepancies between predicted and monitored can mean that the 

MIR signals a failure to the EXEC
 Not only failure detection, but also reasoning capabilities to predict 

the most reasonable source of the fault
 Optimization

- places the spacecraft in the least cost configuration that exhibits a 
desired behavior  

 Recovery
- restores the spacecraft, by finding actions that repair failed components 

or by finding alternative ways of achieving goals 
 standby and safing

- place the spacecraft in a safe state, in absence of recovery 
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Operational Architecture – ExampleOperational Architecture – Example
    

 Two main thrust engines in the spacecraft, both connected to the 
single fuel and oxygen tank

 The second engine is present for redundancy purposes only
 switching between engines is nominally not done
 Model of the different sort of valves, and their status present in the MIR 

 Dark valves are closed. Valves with a bar trough them are pyro-valves: can 
only be opened once with an explosive

 Both configurations in figure satisfy the goal of providing thrust, with the left 
configuration is to be preferred (less pyro-valves open)

 If circled valve fails, the right configuration can be used as alternative.


