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OutlineOutline

 Organization and design of autonomous systems
 Terminology and Concepts

 Architecture
 Functional architecture
 Operational architecture
 Implementation architecture
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Terminology and ConceptsTerminology and Concepts
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Autonomous systems - terminologyAutonomous systems - terminology
 Present in any system that can reach a specified goal or 

perform a specified task independently 
 The autonomy aspects of the behaviour are not very 

interesting if the goal or task is specified in terms of very 
detailed parameters of the system itself
 This is the domain of control theory 

 More interesting is a system that can reach a goal or perform 
a task that is given in terms of parameters or properties of 
the world around it
 Translation of the task description into internal parameters which it 

can control
 Observe corresponding relevant world parameters and compare 

those to internal state parameters
 Decide on its actions on the basis of this comparisons which may 

involve some form of planning or reasoning 
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Autonomous systems - terminologyAutonomous systems - terminology
 The behaviour of such a system appears to us, observers, as 

much more autonomous
 The system is described as intelligent if it performs better 

and better every time it encounters similar circumstances
 It seems to 'learn from experience‘

 In this section, we considerer the principles of behaviour and 
designing such intelligent autonomous systems‚

 Autonomous system is a developing field, and one of the 
difficulties we face is that not all terms have the same 
meaning for everybody

 relevant terms such as 'perception', 'autonomy', 'action', 
'behavior', 'goal-directed', 'learning' and, especially, 
'intelligent' must be defined carefully to be meaningful in our 
descriptions
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Autonomous systems - terminologyAutonomous systems - terminology
 The body of an autonomous system is the part of the world 

that is inside the system 
 We defined the Environment as the world outside a system
 External parameters and external variables are parameters 

and variables that characterize the environment is in a 
particular representation

 Internal Parameters and internal variables characterize the 
body

 The internal variable and internal parameters that can be 
directly controlled by the system are called control variables 
and control parameters

 Distinction between variables and parameters is related to 
the level of abstraction. 
 Parameters on lower level may be variable on a higher level
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Autonomous systems - terminologyAutonomous systems - terminology
 The parameters and variables need not be quantities that 

can be measured by particular physical sensors in the 
system
 they may be more abstract, higher level concepts, which can be 

derived from the physical measurements.
 The perception or observation is the indirect measurement of 

parameters and variables at a given level of hierarchy
 An abstract sensor that do perception is called virtual sensor

 Does not measure physical values, but some form of internal 
representation of those measurements

 Ex: wall sensor, thresholding in image representation
 Virtual actuators are defined similar to virtual sensors
 An internal representation is a representation of perception 

data on different level of abstraction
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Autonomous systems - terminologyAutonomous systems - terminology
 An internal representation is a representation of perception 

data on different level of abstraction
 At every level of abstraction, a reasoning component is 

present between (virtual) sensors and (virtual) actuators
 Implementation is the domain of artificial intelligence, machine 

learning
 Viable representation, language, framework and formalism is 

very important to represent data that flow between the 
sensors and the actuators
 Representations may have an enormous effect on the capability of an 

autonomous system 
 Sometimes so much that a particular approach suddenly becomes 

feasible whereas before it was not
 The framework defines the world model

 Instantiation of the world model defines the world parameters at a 
given time 
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Autonomous systems - example Autonomous systems - example 
 Example: Interleaved sensing and actuation

A motor cart without adaptive capabilities 
must drive autonomous with a constant 
speed
 Task specified by the desired position in shaft 

encoder counts for the motor
 The output of the system is measured 

continuously by the shaft encoder and fed 
back to be compared with the desired position

 A proportional plus integral plus derivative 
(PID) controller can be used in this case to 
computes the voltage V to be applied to the 
motor based on the error e using the gains 
Kp, Ki and Kd:

- The proportionality constant Kp is the gain 
which amplifies the error e. 

- The integral constant Ki is used to decrease 
the steady-state error

- The derivative constant Kd determines the rate 
of change of the error 
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Autonomous systems - exampleAutonomous systems - example
 Example: Interleaved sensing reasoning 

and actuation
the cart has to drive to a specified 
position, starting with velocity zero, 
reaching a certain constant velocity with a 
certain specified acceleration and slowing 
down with a certain specified deceleration

 PID-control can provide a better 
performance of the cart when the PID-
parameters are adjusted depending on 
the situation
 This means, we try to find the "best" PID-

coefficients for a number velocity domains.
 Sense the cart’s velocity and choose the 

optimal PID-parameters
 Introduce a new level of hierarchy in which the 

PID-parameters are adjusted. 
 At the lowest level the control variable is 

changed according to the desired and the 
actual value. 



Organic Computing 12

Autonomous systems – exampleAutonomous systems – example
 More complex behaviour for the cart

 Two driving motors for each of the rear 
wheels 

 The steering is done by the difference 
of the velocities of the rear wheels. 

 The behaviour of the two motors must 
be combined to control the cart as 
whole

 The low level control loop consists of 
the concurrent control loops for the two 
motors

 A new level of abstraction is added in 
which the combination of the individual 
motors is realized 

 Reasoning on this level if for example 
the detection of slip (when the motors 
are expected to behave in the same 
way and they don't act like this)
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Autonomous systems – Design approachesAutonomous systems – Design approaches
 Top down vs. bottom up

 Bottom up approach considered so far
 The bottom-up approach makes clear what is needed in detail for the 

control of an autonomous system 
 New levels of abstraction must be added until we reach a level 

where the communication with the device is possible
 At the inverse, top-down approach starts at the top level where 

general commands are specified by the human
 The human doesn't want to communicate with a robot on a low level 

of abstraction
 It is for example easier to specify a path in terms of starting position and 

end position, instead of a sequence of desired positions.
 The human communicate on a higher level of abstraction using a 

symbolic way
 go from A to B, or drive along a wall, or park.
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Autonomous systems – Design approachesAutonomous systems – Design approaches
 The human communicate on a higher level of abstraction using 

symbolic way
 go from A to B, or drive along a wall, or park.

 Human commands have to be translated through the successive 
levels until the lowest level
 The voltages for the motors are obtained. 

 Each lower level of abstraction investigates details ignored at the 
previous level.
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Autonomous systems – Design approachesAutonomous systems – Design approaches
 Example: a cart which has the goal to drive from position A 

to B, where A and B are in different rooms connected by a 
corridor 

 We assume the map of the environment is known and that 
the cart uses shaft encoders and ultrasonic sensors to 
sense the environment 

 First, decompose the task in a number of subtasks based on 
the knowledge in the map 

 This reasoning on the highest level is called the strategy 
planner

 Strategy: 
 drive to the corridor, drive through the corridor until the door of the 

second room is reached, drive to B. 
 Virtual actuators are needed for corridor and room at this level, and 

modules like "drive through corridor" as possible actions. 
 For each of the subtasks a path has to be planned by a path planner. 
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Autonomous systems – Design approachesAutonomous systems – Design approaches
 A “Path follower” is necessary to 

follow the specified path 
 Input for the path follower comes from 

the virtual sensor “compute deviation” 
which computes the deviation from the 
desired path based on the outcomes of 
the shaft encoders

 The corresponding control variable 
“deviation from path” is controlled by the 
virtual actuator “follow path”, which tries 
to follow the path as close as possible 

 The output of the path follower has to be 
translated into lower-level commands 
until finally the setpoints for the PID-
loops are obtained.
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Autonomous systems – Design approachesAutonomous systems – Design approaches
 Representing alternatives 

 Alternatives behaviour, strategies and algorithms 
can be represented by adding dashed planed to 
diagrams

 An alternative results from the combination of 
available components or strategies on the a given 
level of hierarchy

 In the cart example we could use a wall follower to 
follow the wall in the corridor at a certain distance

 The wall follower is an alternative for the path 
follower and should be activated when the cart 
reaches the corridor

 Also an alternative sensing module for the wall 
follower, namely a module which computes the 
distance to the wall using the ultrasonic sensors is 
needed 
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Autonomous systems – AbstractionAutonomous systems – Abstraction
 The essence of abstraction is to extract essential properties 

while omitting inessential details
 Abstraction separates concept from implementation details

 The successive decomposition of a system in hierarchy levels 
shows abstraction in its most pure form

 Each level of decomposition shows an abstract view of the 
lower levels purely in the sense that details are designated to 
the lower levels

 The decomposition of a system into components is highly 
context dependent

 The result is not only the components, but also the 
relationships between those components, to create the whole 
again

 Abstraction is the key principle that is used for decomposition
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Autonomous systems – the virtual machineAutonomous systems – the virtual machine
 The term virtual refers to a 

characteristic whose existence is 
simulated by software rather than 
actually existing within hardware. 

 A virtual machine is a hypothetical 
computer, whose characteristics 
are defined by its machine 
language, or instruction set

  A computer can then be viewed as 
series of virtual machine layers, on 
top of each other
 The simplest is the bottom-most 

machine language and the 
 The highest language or level is the 

most sophisticated.
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Autonomous systems – the virtual robotAutonomous systems – the virtual robot
 The translation of virtual machine 

concept to autonomous control 
results in the model of a stack of 
control levels
 Each level is represented by a 

language
 The lower level is the level of the robot 

electronic
 The next level provides an interface to 

a more general robot, independent 
from the underlying hardware

 A virtual robot layers depends on the 
lower layers, but can work 
independently from the higher layers
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Autonomous systems – the virtual sensorAutonomous systems – the virtual sensor
 Used to bridge the gap between the complex symbolic models 

needed for symbolic reasoning, and the numeric data available 
from physical sensors

 In every virtual layer the detailed data from the lower layer is 
combined into data for the higher layer
 Sensor data fusion

 Virtual sensors maintain the world model
 Can be central or distributed
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Architecture of Architecture of 
autonomous computing autonomous computing 

SystemsSystems
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Functional ArchitectureFunctional Architecture



Organic Computing 24

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 A well-designed architecture shows the desired functionality, 
without the intention to pin the implementation to certain 
solutions

 A designer of a functional architecture concerns himself with 
the functional behaviour that the system should exhibit

 Many applications need the same sort of functionalities, and 
only differ in the importance of the different functionalities

 A functional architecture should be so general, that it can be 
(re-)used for different applications

 Appropriate medium to compare different systems
 This chapter indicates the functionalities generally needed for 

autonomous systems 
 Two general ways exist to describe autonomous systems
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Hierarchical approach: the assumption is made that on the 
highest level an abstract model of the world exists
 Decisions are made based on this model, which are translated into 

commands for the actuators via several layers
 The sensor processing branch is in this view responsible for the 

initialization and maintenance of the model by combination and 
integration of the information from different sources 

 The power of this approach is the transparent control 
structure of the system
 decisions are made at highest level, translated in commands, which 

are executed by lower levels 
 The drawback of this approach is the overhead which is 

needed to maintain such an abstract world model 
 the system tends to be as slow as its slowest sensing process, a 

troublesome property for a real time system as an autonomous robot 
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Behavioural approach: the assumption is made that on the lowest-level 

algorithms (arbiters) can be found that are able to combine and integrate 
the steering commands from different sources 

 The main idea is to break up the control problem into goals that should 
be achieved instead of stages of information flow 
 Several controllers can be active at the same time 

 No central intelligence. 
 Complex behaviour is the result of a number of competing simple behaviours.

 Multiple parallel data-flows paths are exploited
 The power of this approach is its controller independency

 this makes this approach robust (one of the controllers can break down with 
only minor degradation of the overall system capabilities) 

 and easy to extend (the addition of a controller will only influence the arbiter)
 The drawbacks of this approach are its inefficiency and unpredictability 

 A lot of processing and computation work is done in several modules, and it is 
not clear in advance how the different control signals will be combined
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

Hierarchical vs. Behavioural approach 
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 One of the goals of this course is to show the architectural 

concepts behind autonomous systems
 Mobile robots are a good case study for autonomous 

systems 
 the environment can not be ignored in a successful mobile system, 

unlike many industrial manipulation robots
 The majority of industrial robotarms are successfully 

controlled as an open loop
 an operator instructs the robot by explicitly teaching it a sequence of 

motions. The environment is fixed.
 For mobile robots it is nearly impossible to structure their 

environment 
 This environment is in most cases too large due to the robot's 

mobility 
 A mobile robot has to adapt itself to its environment, not vice versa
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of hierarchical decomposition

 The system is divided along functional lines into progressive levels 
of abstraction

 The flow of information is used as the main guideline for the 
decomposition of the system. 

 The design is based on the intuitive decomposition of a complex 
system in smaller subsystems, that are easier to design

 the control system is decomposed into levels of abstraction
 The interconnection between the subsystems connects adjacent 

layers together
 Information flows 

- from the sensors to a series of perception and modelling processes, 
- via a reasoning or decision making process, 
- through a series of forward control processes, such as navigation and 

motor control, 
to the actuators.
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Perception interprets the sensor data, and 

builds abstract representations for it
 The representations used at the intermediate 

levels are often geometrical primitives like 
lines, circles, or polynomial objects

 The modelling process uses the perception 
data to build high-level models of the world

 Symbolic representations are used by the 
reasoning process to make decisions

 Symbolic data and task instructions as 
supplied by a human operator

 The navigation module converts the symbolic 
activities into geometrical primitives

 The motor control module uses the geometric 
primitives to generate path descriptions for a 
low-level controller 

 This activates the actuators so that the robot 
vehicle moves in its environment
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Crowley's (1989) surveillance robot
 The architecture is based on a twin 

hierarchy of perception and control
 An "Intelligent Supervisor“ manages 

the whole system
 monitors the execution of each task, and 

dynamically generates the actions 
required to accomplish the goals

 Rule based with a procedural orientated 
lower-level

 The action level executes actions as 
required by the supervisor

 Model of the vehicle and environment 
is present at intermediate level

 The motor level is the lowest level
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example: CMU's database approach

 Carnegie Mellon University
 Autonomous outdoor Robot

 follow the street autonomously, in various 
environments and under various conditions 

 The control system consists of 
 several modules, each dedicated to a 

special subtask
 a communication database (Codger) linking 

the modules together
 The Captain executes user mission 

commands and sends each mission's 
destination and constraints to the Map 
Navigator

 The map navigator selects the best route 
from the database, and sends it to the Helm

 The helm co-ordinates local navigation 
continuously within each route segment
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 The Pilot coordinates the activities of 
Perception and Helm, 
 performing local navigation continuously 

within a single route segment
 Perception uses sensors, i.e. a color video 

and a laser range finder, to 
 find objects predicted to be within the vehicle 

field of view and 
 estimates the vehicle position when possible

 The modules are interconnected by a 
central database system called Codger. 
 It supports parallel asynchronous execution 

and communication between modules 
 also handles sensor data fusion
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example: NASREM

 In 1987, NASA needed a reference model for the control system of 
their largest space robot project at that time

- a long manipulator arm for the space station "Freedom“
 A teleoperated arm performs services at the space station

 6 levels of responsibility
 Service Mission Level (Level 6)

- decomposition of the servicing plans into service bay action commands 
 Service Bay Level (Level 5)

- Decomposition of service bay action commands into sequences of object 
task commands (action to be performed)

 Task Level (Level 4)
- decomposition of each object task command into sequences of 

"elementary move" (E-move) commands
 E-Move Level (Level 3)

- E-move commands are decomposed into strings of intermediate 
(primitive) poses which defines motion pathways that are clear of 
obstacles and singularities
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Primitive Level (Level 2)

 the primitive pose is attained by the generation of a dynamical 
smooth path expressed by evenly spaced trajectory points

 Servo Level (Level 1)
 the trajectory points are transformed into joint co-ordinates and 

joint positions, velocities and forces are servoed to actually drive 
the equipment.

 Every level in itself is partitioned into three sections: 
 task decomposition, world modelling and sensory processing. 

 World modelling is done on geometrical and topological maps, lists of 
objects with their features and attributes, and tables of system and 
environmental state variables 

 Sensory processing includes signal processing, detection of patterns, 
recognition of features
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Example of behavioural decomposition
 Brooks' subsumption architecture, 1986

 Decomposes a control system into a set of behaviours
 Each behaviour is a complete control system going from 

sensory inputs to motor outputs
 Each behaviour is a level of competence, responsible to 

achieve and maintain a certain goal 
 Lower levels represent simple goals, while higher levels 

perform more complex and situation specific tasks
 Hierarchical layering of behaviours

 Behaviours use priorities to gain complete control over the actuators
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 If a higher-level behaviour fails, the lower-level behaviours 
are still active, and no longer inhibited 
 The performance of the system degrades gradually when behaviours 

fail
 On the other hand, its performance can get progressively better as 

more and more levels are added
 Provide nice possibility for run-time service composition
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of behavioural decomposition

 Arkin's Robot Schemas Behaviour, 1989
 Behaviour cannot only be generated by chains of modules, but can also 

be produced by a network of schema instances 
 The building block of this approach are the schema instances
 Each schema instance (SI) is a distinct process, applying the 

knowledge and procedure that is contained in a store: a schema. 
 This approach encourages the spawning of multiple schema instances, 

each instantiated with its own parameters 
 The interaction mechanism defines the activity level associated with 

each schema instance
 If the activity level is below a certain threshold the instance does not 

produce output
 Cooperating instances increase one another's activity level 
 Competing instances lower another's activity level
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 As an example of the application is a mobile robot controller 

for the HARV robot
 Arkin uses different types of schemas 

 Perception schemas are meant to produce sensor independent 
scene interpretations

 The activity level of a perceptual schema instance can be 
interpreted as the confidence in this interpretation 

- Examples of interesting interpretations are landmarks, pathways, and 
obstacles

- The corresponding perceptual schemas are find landmark, identify 
terrain, and identify obstacle

 Those schemas make use of different interpreters, which have 
preprocessed the raw data on several layers, before the results are 
presented to the high-level perception schemas 

- Motor schemas must drive the robot while taking in account the 
feedback from the environment 
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
- Arkin's motor schemas do this by 

producing a velocity vector as 
output 

- The vehicle interface collects all 
velocity vectors from all concurrent 
schema instances, sums them up 
and converts the result into 
commands for the different motors

- Examples of motor schemas are 
avoid obstacle and stay on path

 More than one instance of the same 
schema can be active, for instance 
if more than one obstacle is in the 
neighbourhood of the robot
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Hybrid decomposition 
 Incorporates the characteristics of both functional and 

behavioural systems
 high-level reasoning is a sequential process
 real-time robot control involves mostly parallel processing

 Demand for highly abstracted knowledge about the state of 
the environment 
 This suggests a functional decomposition

 This requires parallel execution of both perception and 
actuator control
 Especially when execution takes place in a dynamic environment, 

real-time sensor information is mandatory to guide the actuator 
control process 
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Organization of the structure in 
a number of hierarchical layers

 The internal structure of the 
levels is functional at the higher 
levels and behavioural at the 
lower levels

 Task achieving behaviors are 
exploited at the lowest level, 

 Perception-reasoning-control 
loops are used at the higher 
levels
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of hybrid decomposition

 Payton's hybrid architecture , 1986, 1990, 1991
 Used for reflexive control of an autonomous land vehicle 

(ALV)
 Allow abstract symbolic plans to modify the performance of 

low-level behaviours in accordance with changes in goals 
and environmental context 

 The control system is divided into separate perception and 
planning units

 System divided in four layers
 The higher levels operate on assimilated data that pertain to long-

term decisions
 The  lower layers use more immediate, numerical data 

 A number of virtual sensors produce partial world models 
 Aimed  at detecting very specialized environmental features
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Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

Payton's hybrid 
architecture 


