
Organic Computing 1

Dr. rer. nat. Christophe BobdaDr. rer. nat. Christophe Bobda
Prof. Dr. Rolf WankaProf. Dr. Rolf Wanka

 Department of Computer Science 12Department of Computer Science 12
 Hardware-Software-Co-DesignHardware-Software-Co-Design

Organic ComputingOrganic Computing

Organic Computing 2

Organization and design Organization and design
of autonomous of autonomous systemssystems

Organic Computing 3

OutlineOutline

 Organization and design of autonomous systems
 Terminology and Concepts

 Architecture
 Functional architecture
 Operational architecture
 Implementation architecture

Organic Computing 4

Terminology and ConceptsTerminology and Concepts

Organic Computing 5

Autonomous systems - terminologyAutonomous systems - terminology
 Present in any system that can reach a specified goal or

perform a specified task independently
 The autonomy aspects of the behaviour are not very

interesting if the goal or task is specified in terms of very
detailed parameters of the system itself
 This is the domain of control theory

 More interesting is a system that can reach a goal or perform
a task that is given in terms of parameters or properties of
the world around it
 Translation of the task description into internal parameters which it

can control
 Observe corresponding relevant world parameters and compare

those to internal state parameters
 Decide on its actions on the basis of this comparisons which may

involve some form of planning or reasoning

Organic Computing 6

Autonomous systems - terminologyAutonomous systems - terminology
 The behaviour of such a system appears to us, observers, as

much more autonomous
 The system is described as intelligent if it performs better

and better every time it encounters similar circumstances
 It seems to 'learn from experience‘

 In this section, we considerer the principles of behaviour and
designing such intelligent autonomous systems‚

 Autonomous system is a developing field, and one of the
difficulties we face is that not all terms have the same
meaning for everybody

 relevant terms such as 'perception', 'autonomy', 'action',
'behavior', 'goal-directed', 'learning' and, especially,
'intelligent' must be defined carefully to be meaningful in our
descriptions

Organic Computing 7

Autonomous systems - terminologyAutonomous systems - terminology
 The body of an autonomous system is the part of the world

that is inside the system
 We defined the Environment as the world outside a system
 External parameters and external variables are parameters

and variables that characterize the environment is in a
particular representation

 Internal Parameters and internal variables characterize the
body

 The internal variable and internal parameters that can be
directly controlled by the system are called control variables
and control parameters

 Distinction between variables and parameters is related to
the level of abstraction.
 Parameters on lower level may be variable on a higher level

Organic Computing 8

Autonomous systems - terminologyAutonomous systems - terminology
 The parameters and variables need not be quantities that

can be measured by particular physical sensors in the
system
 they may be more abstract, higher level concepts, which can be

derived from the physical measurements.
 The perception or observation is the indirect measurement of

parameters and variables at a given level of hierarchy
 An abstract sensor that do perception is called virtual sensor

 Does not measure physical values, but some form of internal
representation of those measurements

 Ex: wall sensor, thresholding in image representation
 Virtual actuators are defined similar to virtual sensors
 An internal representation is a representation of perception

data on different level of abstraction

Organic Computing 9

Autonomous systems - terminologyAutonomous systems - terminology
 An internal representation is a representation of perception

data on different level of abstraction
 At every level of abstraction, a reasoning component is

present between (virtual) sensors and (virtual) actuators
 Implementation is the domain of artificial intelligence, machine

learning
 Viable representation, language, framework and formalism is

very important to represent data that flow between the
sensors and the actuators
 Representations may have an enormous effect on the capability of an

autonomous system
 Sometimes so much that a particular approach suddenly becomes

feasible whereas before it was not
 The framework defines the world model

 Instantiation of the world model defines the world parameters at a
given time

Organic Computing 10

Autonomous systems - example Autonomous systems - example
 Example: Interleaved sensing and actuation

A motor cart without adaptive capabilities
must drive autonomous with a constant
speed
 Task specified by the desired position in shaft

encoder counts for the motor
 The output of the system is measured

continuously by the shaft encoder and fed
back to be compared with the desired position

 A proportional plus integral plus derivative
(PID) controller can be used in this case to
computes the voltage V to be applied to the
motor based on the error e using the gains
Kp, Ki and Kd:

- The proportionality constant Kp is the gain
which amplifies the error e.

- The integral constant Ki is used to decrease
the steady-state error

- The derivative constant Kd determines the rate
of change of the error

Organic Computing 11

Autonomous systems - exampleAutonomous systems - example
 Example: Interleaved sensing reasoning

and actuation
the cart has to drive to a specified
position, starting with velocity zero,
reaching a certain constant velocity with a
certain specified acceleration and slowing
down with a certain specified deceleration

 PID-control can provide a better
performance of the cart when the PID-
parameters are adjusted depending on
the situation
 This means, we try to find the "best" PID-

coefficients for a number velocity domains.
 Sense the cart’s velocity and choose the

optimal PID-parameters
 Introduce a new level of hierarchy in which the

PID-parameters are adjusted.
 At the lowest level the control variable is

changed according to the desired and the
actual value.

Organic Computing 12

Autonomous systems – exampleAutonomous systems – example
 More complex behaviour for the cart

 Two driving motors for each of the rear
wheels

 The steering is done by the difference
of the velocities of the rear wheels.

 The behaviour of the two motors must
be combined to control the cart as
whole

 The low level control loop consists of
the concurrent control loops for the two
motors

 A new level of abstraction is added in
which the combination of the individual
motors is realized

 Reasoning on this level if for example
the detection of slip (when the motors
are expected to behave in the same
way and they don't act like this)

Organic Computing 13

Autonomous systems – Design approachesAutonomous systems – Design approaches
 Top down vs. bottom up

 Bottom up approach considered so far
 The bottom-up approach makes clear what is needed in detail for the

control of an autonomous system
 New levels of abstraction must be added until we reach a level

where the communication with the device is possible
 At the inverse, top-down approach starts at the top level where

general commands are specified by the human
 The human doesn't want to communicate with a robot on a low level

of abstraction
 It is for example easier to specify a path in terms of starting position and

end position, instead of a sequence of desired positions.
 The human communicate on a higher level of abstraction using a

symbolic way
 go from A to B, or drive along a wall, or park.

Organic Computing 14

Autonomous systems – Design approachesAutonomous systems – Design approaches
 The human communicate on a higher level of abstraction using

symbolic way
 go from A to B, or drive along a wall, or park.

 Human commands have to be translated through the successive
levels until the lowest level
 The voltages for the motors are obtained.

 Each lower level of abstraction investigates details ignored at the
previous level.

Organic Computing 15

Autonomous systems – Design approachesAutonomous systems – Design approaches
 Example: a cart which has the goal to drive from position A

to B, where A and B are in different rooms connected by a
corridor

 We assume the map of the environment is known and that
the cart uses shaft encoders and ultrasonic sensors to
sense the environment

 First, decompose the task in a number of subtasks based on
the knowledge in the map

 This reasoning on the highest level is called the strategy
planner

 Strategy:
 drive to the corridor, drive through the corridor until the door of the

second room is reached, drive to B.
 Virtual actuators are needed for corridor and room at this level, and

modules like "drive through corridor" as possible actions.
 For each of the subtasks a path has to be planned by a path planner.

Organic Computing 16

Autonomous systems – Design approachesAutonomous systems – Design approaches
 A “Path follower” is necessary to

follow the specified path
 Input for the path follower comes from

the virtual sensor “compute deviation”
which computes the deviation from the
desired path based on the outcomes of
the shaft encoders

 The corresponding control variable
“deviation from path” is controlled by the
virtual actuator “follow path”, which tries
to follow the path as close as possible

 The output of the path follower has to be
translated into lower-level commands
until finally the setpoints for the PID-
loops are obtained.

Organic Computing 17

Autonomous systems – Design approachesAutonomous systems – Design approaches
 Representing alternatives

 Alternatives behaviour, strategies and algorithms
can be represented by adding dashed planed to
diagrams

 An alternative results from the combination of
available components or strategies on the a given
level of hierarchy

 In the cart example we could use a wall follower to
follow the wall in the corridor at a certain distance

 The wall follower is an alternative for the path
follower and should be activated when the cart
reaches the corridor

 Also an alternative sensing module for the wall
follower, namely a module which computes the
distance to the wall using the ultrasonic sensors is
needed

Organic Computing 18

Autonomous systems – AbstractionAutonomous systems – Abstraction
 The essence of abstraction is to extract essential properties

while omitting inessential details
 Abstraction separates concept from implementation details

 The successive decomposition of a system in hierarchy levels
shows abstraction in its most pure form

 Each level of decomposition shows an abstract view of the
lower levels purely in the sense that details are designated to
the lower levels

 The decomposition of a system into components is highly
context dependent

 The result is not only the components, but also the
relationships between those components, to create the whole
again

 Abstraction is the key principle that is used for decomposition

Organic Computing 19

Autonomous systems – the virtual machineAutonomous systems – the virtual machine
 The term virtual refers to a

characteristic whose existence is
simulated by software rather than
actually existing within hardware.

 A virtual machine is a hypothetical
computer, whose characteristics
are defined by its machine
language, or instruction set

 A computer can then be viewed as
series of virtual machine layers, on
top of each other
 The simplest is the bottom-most

machine language and the
 The highest language or level is the

most sophisticated.

Organic Computing 20

Autonomous systems – the virtual robotAutonomous systems – the virtual robot
 The translation of virtual machine

concept to autonomous control
results in the model of a stack of
control levels
 Each level is represented by a

language
 The lower level is the level of the robot

electronic
 The next level provides an interface to

a more general robot, independent
from the underlying hardware

 A virtual robot layers depends on the
lower layers, but can work
independently from the higher layers

Organic Computing 21

Autonomous systems – the virtual sensorAutonomous systems – the virtual sensor
 Used to bridge the gap between the complex symbolic models

needed for symbolic reasoning, and the numeric data available
from physical sensors

 In every virtual layer the detailed data from the lower layer is
combined into data for the higher layer
 Sensor data fusion

 Virtual sensors maintain the world model
 Can be central or distributed

Organic Computing 22

Architecture of Architecture of
autonomous computing autonomous computing

SystemsSystems

Organic Computing 23

Functional ArchitectureFunctional Architecture

Organic Computing 24

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 A well-designed architecture shows the desired functionality,
without the intention to pin the implementation to certain
solutions

 A designer of a functional architecture concerns himself with
the functional behaviour that the system should exhibit

 Many applications need the same sort of functionalities, and
only differ in the importance of the different functionalities

 A functional architecture should be so general, that it can be
(re-)used for different applications

 Appropriate medium to compare different systems
 This chapter indicates the functionalities generally needed for

autonomous systems
 Two general ways exist to describe autonomous systems

Organic Computing 25

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Hierarchical approach: the assumption is made that on the
highest level an abstract model of the world exists
 Decisions are made based on this model, which are translated into

commands for the actuators via several layers
 The sensor processing branch is in this view responsible for the

initialization and maintenance of the model by combination and
integration of the information from different sources

 The power of this approach is the transparent control
structure of the system
 decisions are made at highest level, translated in commands, which

are executed by lower levels
 The drawback of this approach is the overhead which is

needed to maintain such an abstract world model
 the system tends to be as slow as its slowest sensing process, a

troublesome property for a real time system as an autonomous robot

Organic Computing 26

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Behavioural approach: the assumption is made that on the lowest-level

algorithms (arbiters) can be found that are able to combine and integrate
the steering commands from different sources

 The main idea is to break up the control problem into goals that should
be achieved instead of stages of information flow
 Several controllers can be active at the same time

 No central intelligence.
 Complex behaviour is the result of a number of competing simple behaviours.

 Multiple parallel data-flows paths are exploited
 The power of this approach is its controller independency

 this makes this approach robust (one of the controllers can break down with
only minor degradation of the overall system capabilities)

 and easy to extend (the addition of a controller will only influence the arbiter)
 The drawbacks of this approach are its inefficiency and unpredictability

 A lot of processing and computation work is done in several modules, and it is
not clear in advance how the different control signals will be combined

Organic Computing 27

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

Hierarchical vs. Behavioural approach

Organic Computing 28

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 One of the goals of this course is to show the architectural

concepts behind autonomous systems
 Mobile robots are a good case study for autonomous

systems
 the environment can not be ignored in a successful mobile system,

unlike many industrial manipulation robots
 The majority of industrial robotarms are successfully

controlled as an open loop
 an operator instructs the robot by explicitly teaching it a sequence of

motions. The environment is fixed.
 For mobile robots it is nearly impossible to structure their

environment
 This environment is in most cases too large due to the robot's

mobility
 A mobile robot has to adapt itself to its environment, not vice versa

Organic Computing 29

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of hierarchical decomposition

 The system is divided along functional lines into progressive levels
of abstraction

 The flow of information is used as the main guideline for the
decomposition of the system.

 The design is based on the intuitive decomposition of a complex
system in smaller subsystems, that are easier to design

 the control system is decomposed into levels of abstraction
 The interconnection between the subsystems connects adjacent

layers together
 Information flows

- from the sensors to a series of perception and modelling processes,
- via a reasoning or decision making process,
- through a series of forward control processes, such as navigation and

motor control,
to the actuators.

Organic Computing 30

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Perception interprets the sensor data, and

builds abstract representations for it
 The representations used at the intermediate

levels are often geometrical primitives like
lines, circles, or polynomial objects

 The modelling process uses the perception
data to build high-level models of the world

 Symbolic representations are used by the
reasoning process to make decisions

 Symbolic data and task instructions as
supplied by a human operator

 The navigation module converts the symbolic
activities into geometrical primitives

 The motor control module uses the geometric
primitives to generate path descriptions for a
low-level controller

 This activates the actuators so that the robot
vehicle moves in its environment

Organic Computing 31

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Crowley's (1989) surveillance robot
 The architecture is based on a twin

hierarchy of perception and control
 An "Intelligent Supervisor“ manages

the whole system
 monitors the execution of each task, and

dynamically generates the actions
required to accomplish the goals

 Rule based with a procedural orientated
lower-level

 The action level executes actions as
required by the supervisor

 Model of the vehicle and environment
is present at intermediate level

 The motor level is the lowest level

Organic Computing 32

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example: CMU's database approach

 Carnegie Mellon University
 Autonomous outdoor Robot

 follow the street autonomously, in various
environments and under various conditions

 The control system consists of
 several modules, each dedicated to a

special subtask
 a communication database (Codger) linking

the modules together
 The Captain executes user mission

commands and sends each mission's
destination and constraints to the Map
Navigator

 The map navigator selects the best route
from the database, and sends it to the Helm

 The helm co-ordinates local navigation
continuously within each route segment

Organic Computing 33

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 The Pilot coordinates the activities of
Perception and Helm,
 performing local navigation continuously

within a single route segment
 Perception uses sensors, i.e. a color video

and a laser range finder, to
 find objects predicted to be within the vehicle

field of view and
 estimates the vehicle position when possible

 The modules are interconnected by a
central database system called Codger.
 It supports parallel asynchronous execution

and communication between modules
 also handles sensor data fusion

Organic Computing 34

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example: NASREM

 In 1987, NASA needed a reference model for the control system of
their largest space robot project at that time

- a long manipulator arm for the space station "Freedom“
 A teleoperated arm performs services at the space station

 6 levels of responsibility
 Service Mission Level (Level 6)

- decomposition of the servicing plans into service bay action commands
 Service Bay Level (Level 5)

- Decomposition of service bay action commands into sequences of object
task commands (action to be performed)

 Task Level (Level 4)
- decomposition of each object task command into sequences of

"elementary move" (E-move) commands
 E-Move Level (Level 3)

- E-move commands are decomposed into strings of intermediate
(primitive) poses which defines motion pathways that are clear of
obstacles and singularities

Organic Computing 35

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Primitive Level (Level 2)

 the primitive pose is attained by the generation of a dynamical
smooth path expressed by evenly spaced trajectory points

 Servo Level (Level 1)
 the trajectory points are transformed into joint co-ordinates and

joint positions, velocities and forces are servoed to actually drive
the equipment.

 Every level in itself is partitioned into three sections:
 task decomposition, world modelling and sensory processing.

 World modelling is done on geometrical and topological maps, lists of
objects with their features and attributes, and tables of system and
environmental state variables

 Sensory processing includes signal processing, detection of patterns,
recognition of features

Organic Computing 36

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

Organic Computing 37

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Example of behavioural decomposition
 Brooks' subsumption architecture, 1986

 Decomposes a control system into a set of behaviours
 Each behaviour is a complete control system going from

sensory inputs to motor outputs
 Each behaviour is a level of competence, responsible to

achieve and maintain a certain goal
 Lower levels represent simple goals, while higher levels

perform more complex and situation specific tasks
 Hierarchical layering of behaviours

 Behaviours use priorities to gain complete control over the actuators

Organic Computing 38

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 If a higher-level behaviour fails, the lower-level behaviours
are still active, and no longer inhibited
 The performance of the system degrades gradually when behaviours

fail
 On the other hand, its performance can get progressively better as

more and more levels are added
 Provide nice possibility for run-time service composition

Organic Computing 39

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of behavioural decomposition

 Arkin's Robot Schemas Behaviour, 1989
 Behaviour cannot only be generated by chains of modules, but can also

be produced by a network of schema instances
 The building block of this approach are the schema instances
 Each schema instance (SI) is a distinct process, applying the

knowledge and procedure that is contained in a store: a schema.
 This approach encourages the spawning of multiple schema instances,

each instantiated with its own parameters
 The interaction mechanism defines the activity level associated with

each schema instance
 If the activity level is below a certain threshold the instance does not

produce output
 Cooperating instances increase one another's activity level
 Competing instances lower another's activity level

Organic Computing 40

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 As an example of the application is a mobile robot controller

for the HARV robot
 Arkin uses different types of schemas

 Perception schemas are meant to produce sensor independent
scene interpretations

 The activity level of a perceptual schema instance can be
interpreted as the confidence in this interpretation

- Examples of interesting interpretations are landmarks, pathways, and
obstacles

- The corresponding perceptual schemas are find landmark, identify
terrain, and identify obstacle

 Those schemas make use of different interpreters, which have
preprocessed the raw data on several layers, before the results are
presented to the high-level perception schemas

- Motor schemas must drive the robot while taking in account the
feedback from the environment

Organic Computing 41

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
- Arkin's motor schemas do this by

producing a velocity vector as
output

- The vehicle interface collects all
velocity vectors from all concurrent
schema instances, sums them up
and converts the result into
commands for the different motors

- Examples of motor schemas are
avoid obstacle and stay on path

 More than one instance of the same
schema can be active, for instance
if more than one obstacle is in the
neighbourhood of the robot

Organic Computing 42

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Hybrid decomposition
 Incorporates the characteristics of both functional and

behavioural systems
 high-level reasoning is a sequential process
 real-time robot control involves mostly parallel processing

 Demand for highly abstracted knowledge about the state of
the environment
 This suggests a functional decomposition

 This requires parallel execution of both perception and
actuator control
 Especially when execution takes place in a dynamic environment,

real-time sensor information is mandatory to guide the actuator
control process

Organic Computing 43

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

 Organization of the structure in
a number of hierarchical layers

 The internal structure of the
levels is functional at the higher
levels and behavioural at the
lower levels

 Task achieving behaviors are
exploited at the lowest level,

 Perception-reasoning-control
loops are used at the higher
levels

Organic Computing 44

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture
 Example of hybrid decomposition

 Payton's hybrid architecture , 1986, 1990, 1991
 Used for reflexive control of an autonomous land vehicle

(ALV)
 Allow abstract symbolic plans to modify the performance of

low-level behaviours in accordance with changes in goals
and environmental context

 The control system is divided into separate perception and
planning units

 System divided in four layers
 The higher levels operate on assimilated data that pertain to long-

term decisions
 The lower layers use more immediate, numerical data

 A number of virtual sensors produce partial world models
 Aimed at detecting very specialized environmental features

Organic Computing 45

Autonomous systems - Functional ArchitectureAutonomous systems - Functional Architecture

Payton's hybrid
architecture

